Practical Considerations for Agentic LLM Systems
- URL: http://arxiv.org/abs/2412.04093v1
- Date: Thu, 05 Dec 2024 11:57:49 GMT
- Title: Practical Considerations for Agentic LLM Systems
- Authors: Chris Sypherd, Vaishak Belle,
- Abstract summary: This paper frames actionable insights and considerations from the research community in the context of established application paradigms.
Namely, we position relevant research findings into four broad categories--Planning, Memory Tools, and Control Flow--based on common practices in application-focused literature.
- Score: 5.455744338342196
- License:
- Abstract: As the strength of Large Language Models (LLMs) has grown over recent years, so too has interest in their use as the underlying models for autonomous agents. Although LLMs demonstrate emergent abilities and broad expertise across natural language domains, their inherent unpredictability makes the implementation of LLM agents challenging, resulting in a gap between related research and the real-world implementation of such systems. To bridge this gap, this paper frames actionable insights and considerations from the research community in the context of established application paradigms to enable the construction and facilitate the informed deployment of robust LLM agents. Namely, we position relevant research findings into four broad categories--Planning, Memory, Tools, and Control Flow--based on common practices in application-focused literature and highlight practical considerations to make when designing agentic LLMs for real-world applications, such as handling stochasticity and managing resources efficiently. While we do not conduct empirical evaluations, we do provide the necessary background for discussing critical aspects of agentic LLM designs, both in academia and industry.
Related papers
- Large Language Models for Code Generation: The Practitioners Perspective [4.946128083535776]
Large Language Models (LLMs) have emerged as coding assistants, capable of generating source code from natural language prompts.
We propose and develop a multi-model unified platform to generate and execute code based on natural language prompts.
We conducted a survey with 60 software practitioners from 11 countries across four continents to evaluate the usability, performance, strengths, and limitations of each model.
arXiv Detail & Related papers (2025-01-28T14:52:16Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
Large Language Models (LLMs) exhibit remarkable performance across various language-related tasks.
LLMs have demonstrated emergent abilities extending beyond their core functions.
This paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities.
arXiv Detail & Related papers (2025-01-03T21:04:49Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
arXiv Detail & Related papers (2024-01-07T09:08:24Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
Large Language Models (LLMs) have emerged as powerful tools for various real-world applications.
Despite their prowess, intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks.
This paper proposes a structured framework tailored for LLM-based AI Agents.
arXiv Detail & Related papers (2023-08-07T09:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.