A Call for New Recipes to Enhance Spatial Reasoning in MLLMs
- URL: http://arxiv.org/abs/2504.15037v1
- Date: Mon, 21 Apr 2025 11:48:39 GMT
- Title: A Call for New Recipes to Enhance Spatial Reasoning in MLLMs
- Authors: Huanyu Zhang, Chengzu Li, Wenshan Wu, Shaoguang Mao, Yan xia, Ivan Vulić, Zhang Zhang, Liang Wang, Tieniu Tan, Furu Wei,
- Abstract summary: Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks.<n>Recent studies have exposed critical limitations in their spatial reasoning capabilities.<n>This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world.
- Score: 85.67171333213301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks. However, recent studies have exposed critical limitations in their spatial reasoning capabilities. This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world, thereby limiting their broader applications. We argue that spatial reasoning capabilities will not naturally emerge from merely scaling existing architectures and training methodologies. Instead, this challenge demands dedicated attention to fundamental modifications in the current MLLM development approach. In this position paper, we first establish a comprehensive framework for spatial reasoning within the context of MLLMs. We then elaborate on its pivotal role in real-world applications. Through systematic analysis, we examine how individual components of the current methodology-from training data to reasoning mechanisms-influence spatial reasoning capabilities. This examination reveals critical limitations while simultaneously identifying promising avenues for advancement. Our work aims to direct the AI research community's attention toward these crucial yet underexplored aspects. By highlighting these challenges and opportunities, we seek to catalyze progress toward achieving human-like spatial reasoning capabilities in MLLMs.
Related papers
- A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Position: Multimodal Large Language Models Can Significantly Advance Scientific Reasoning [51.11965014462375]
Multimodal Large Language Models (MLLMs) integrate text, images, and other modalities.<n>This paper argues that MLLMs can significantly advance scientific reasoning across disciplines such as mathematics, physics, chemistry, and biology.
arXiv Detail & Related papers (2025-02-05T04:05:27Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
Large Language Models (LLMs) exhibit remarkable performance across various language-related tasks.<n>LLMs have demonstrated emergent abilities extending beyond their core functions.<n>This paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities.
arXiv Detail & Related papers (2025-01-03T21:04:49Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning [19.399925987942204]
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks.<n>Most tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments.<n>We introduce Sparkle: a framework that uses synthetic data generation to provide targeted supervision for vision language models (VLMs) in three basic spatial capabilities.
arXiv Detail & Related papers (2024-10-21T16:26:09Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.