論文の概要: MVUDA: Unsupervised Domain Adaptation for Multi-view Pedestrian Detection
- arxiv url: http://arxiv.org/abs/2412.04117v1
- Date: Thu, 05 Dec 2024 12:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:42.507108
- Title: MVUDA: Unsupervised Domain Adaptation for Multi-view Pedestrian Detection
- Title(参考訳): MVUDA:マルチビュー歩行者検出のための教師なしドメイン適応
- Authors: Erik Brorsson, Lennart Svensson, Kristofer Bengtsson, Knut Åkesson,
- Abstract要約: 我々は、ラベル付きデータをテストで使用するものと異なるマルチカメラ設定を用いて収集する環境で、多視点歩行者検出に対処する。
ラベル付きデータを追加することなく新しいリグにモデルを適応させる,教師なしドメイン適応(UDA)手法を提案する。
- 参考スコア(独自算出の注目度): 4.506083131558207
- License:
- Abstract: We address multi-view pedestrian detection in a setting where labeled data is collected using a multi-camera setup different from the one used for testing. While recent multi-view pedestrian detectors perform well on the camera rig used for training, their performance declines when applied to a different setup. To facilitate seamless deployment across varied camera rigs, we propose an unsupervised domain adaptation (UDA) method that adapts the model to new rigs without requiring additional labeled data. Specifically, we leverage the mean teacher self-training framework with a novel pseudo-labeling technique tailored to multi-view pedestrian detection. This method achieves state-of-the-art performance on multiple benchmarks, including MultiviewX$\rightarrow$Wildtrack. Unlike previous methods, our approach eliminates the need for external labeled monocular datasets, thereby reducing reliance on labeled data. Extensive evaluations demonstrate the effectiveness of our method and validate key design choices. By enabling robust adaptation across camera setups, our work enhances the practicality of multi-view pedestrian detectors and establishes a strong UDA baseline for future research.
- Abstract(参考訳): 本研究では,テスト用と異なるマルチカメラ設定を用いてラベル付きデータを収集する環境で,多視点歩行者検出に対処する。
最近の多視点歩行者検出器は、訓練に使用されるカメラリグでよく機能するが、異なる設定に適用すると性能が低下する。
カメラリグ間のシームレスな配置を容易にするため,ラベル付きデータの追加を必要とせず,新しいリグにモデルを適応させるunsupervised domain adapt (UDA)法を提案する。
具体的には、平均的な教師の自己学習フレームワークを、多視点歩行者検出に適した新しい擬似ラベル技術で活用する。
この方法は、MultiviewX$\rightarrow$Wildtrackを含む複数のベンチマークで最先端のパフォーマンスを実現する。
従来の手法とは異なり,本手法では,外部ラベル付き単分子データセットの必要性を排除し,ラベル付きデータへの依存を減らす。
大規模評価は,提案手法の有効性を実証し,重要な設計選択の有効性を検証した。
カメラ装置間のロバストな適応を可能にすることにより、多視点歩行者検出器の実用性を高め、将来の研究のための強力なUDAベースラインを確立する。
関連論文リスト
- Multi-View People Detection in Large Scenes via Supervised View-Wise Contribution Weighting [44.48514301889318]
本稿では、教師付きビューワイドコントリビューション重み付け手法の開発により、多視点人物検出の改善に焦点をあてる。
モデルの一般化能力を高めるために、大規模な合成データセットが採用されている。
実験により,提案手法が有望な多面的人物検出性能の実現に有効であることを実証した。
論文 参考訳(メタデータ) (2024-05-30T11:03:27Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
本稿では,マルチモーダル位置認識のための新しいニューラルネットワークLCPRを提案する。
位置認識性能を向上させるために,マルチビューカメラとLiDARデータを効果的に利用することができる。
論文 参考訳(メタデータ) (2023-11-06T15:39:48Z) - Cross-View Cross-Scene Multi-View Crowd Counting [56.83882084112913]
従来,複数カメラを用いて1台のカメラの視野を拡大する手法が提案されてきた。
任意のカメラレイアウトで異なるシーンでトレーニングやテストを行う,クロスビュー・クロスシーン(CVCS)のマルチビュー・クラウドカウント・パラダイムを提案する。
論文 参考訳(メタデータ) (2022-05-03T15:03:44Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
本研究では,複数の周囲からの情報を組み込んだSurroundDepth法を提案し,カメラ間の深度マップの予測を行う。
具体的には、周囲のすべてのビューを処理し、複数のビューから情報を効果的に融合するクロスビュー変換器を提案する。
実験において,本手法は,挑戦的なマルチカメラ深度推定データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-04-07T17:58:47Z) - Camera-Tracklet-Aware Contrastive Learning for Unsupervised Vehicle
Re-Identification [4.5471611558189124]
車両識別ラベルのないマルチカメラ・トラックレット情報を用いたカメラ・トラックレット対応コントラスト学習(CTACL)を提案する。
提案したCTACLは、全車両画像(全車両画像)を複数のカメラレベルの画像に分割し、コントラスト学習を行う。
本稿では,ビデオベースおよび画像ベース車両のRe-IDデータセットに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2021-09-14T02:12:54Z) - Self-Supervision & Meta-Learning for One-Shot Unsupervised Cross-Domain
Detection [0.0]
本研究では, 対象サンプルを1つだけ使用して, ドメイン間の教師なし適応を実現できるオブジェクト検出アルゴリズムを提案する。
メタラーニングを利用して、単サンプルのクロスドメイン学習エピソードをシミュレートし、テスト条件の整合性を向上する。
論文 参考訳(メタデータ) (2021-06-07T10:33:04Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。