DeepFEA: Deep Learning for Prediction of Transient Finite Element Analysis Solutions
- URL: http://arxiv.org/abs/2412.04121v1
- Date: Thu, 05 Dec 2024 12:46:18 GMT
- Title: DeepFEA: Deep Learning for Prediction of Transient Finite Element Analysis Solutions
- Authors: Georgios Triantafyllou, Panagiotis G. Kalozoumis, George Dimas, Dimitris K. Iakovidis,
- Abstract summary: Finite Element Analysis (FEA) is a powerful but computationally intensive method for simulating physical phenomena.<n>Recent advancements in machine learning have led to surrogate models capable of accelerating FEA.<n>Motivated by this research gap, this study proposes DeepFEA, a deep learning-based framework.
- Score: 2.9784611307466187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finite Element Analysis (FEA) is a powerful but computationally intensive method for simulating physical phenomena. Recent advancements in machine learning have led to surrogate models capable of accelerating FEA. Yet there are still limitations in developing surrogates of transient FEA models that can simultaneously predict the solutions for both nodes and elements with applicability on both the 2D and 3D domains. Motivated by this research gap, this study proposes DeepFEA, a deep learning-based framework that leverages a multilayer Convolutional Long Short-Term Memory (ConvLSTM) network branching into two parallel convolutional neural networks to predict the solutions for both nodes and elements of FEA models. The proposed network is optimized using a novel adaptive learning algorithm, called Node-Element Loss Optimization (NELO). NELO minimizes the error occurring at both branches of the network enabling the prediction of solutions for transient FEA simulations. The experimental evaluation of DeepFEA is performed on three datasets in the context of structural mechanics, generated to serve as publicly available reference datasets. The results show that DeepFEA can achieve less than 3% normalized mean and root mean squared error for 2D and 3D simulation scenarios, and inference times that are two orders of magnitude faster than FEA. In contrast, relevant state-of-the-art methods face challenges with multi-dimensional output and dynamic input prediction. Furthermore, DeepFEA's robustness was demonstrated in a real-life biomedical scenario, confirming its suitability for accurate and efficient predictions of FEA simulations.
Related papers
- A Multi-Step Comparative Framework for Anomaly Detection in IoT Data Streams [0.9208007322096533]
Internet of Things (IoT) devices have introduced critical security challenges, underscoring the need for accurate anomaly detection.<n>This paper presents a multi-step evaluation framework assessing the combined impact of preprocessing choices on three machine learning algorithms.<n> Experiments on the IoTID20 dataset shows that GBoosting consistently delivers superior accuracy across preprocessing configurations.
arXiv Detail & Related papers (2025-05-22T16:28:22Z) - A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling [1.5862483908050367]
We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling.
A dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder.
A synthetic model generation method utilizing 3D Gaussian random field (GRF) accurately replicates the electrical structures of real-world geological scenarios.
arXiv Detail & Related papers (2025-03-14T13:48:25Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - A Self-organizing Interval Type-2 Fuzzy Neural Network for Multi-Step Time Series Prediction [9.546043411729206]
Interval type 2 fuzzy neural network (IT2FNN) has shown exceptional performance in uncertainty modelling for single-step prediction tasks.
This paper proposes a new selforganizing interval type-2 fuzzy neural network with multiple outputs (SOIT2FNN-MO)
Experimental results on chaotic and microgrid prediction problems demonstrate that SOIT2FNN-MO outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-07-10T19:35:44Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - DF2: Distribution-Free Decision-Focused Learning [53.2476224456902]
Decision-focused learning (DFL) has recently emerged as a powerful approach for predictthen-optimize problems.
Existing end-to-end DFL methods are hindered by three significant bottlenecks: model error, sample average approximation error, and distribution-based parameterization of the expected objective.
We present DF2 -- the first textit-free decision-focused learning method explicitly designed to address these three bottlenecks.
arXiv Detail & Related papers (2023-08-11T00:44:46Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.