An In-Depth Examination of Risk Assessment in Multi-Class Classification Algorithms
- URL: http://arxiv.org/abs/2412.04166v1
- Date: Thu, 05 Dec 2024 14:03:16 GMT
- Title: An In-Depth Examination of Risk Assessment in Multi-Class Classification Algorithms
- Authors: Disha Ghandwani, Neeraj Sarna, Yuanyuan Li, Yang Lin,
- Abstract summary: We numerically analyze the performance of different methods in solving the risk-assessment problem.
Our conformal prediction based approach is model and data-distribution agnostic, simple to implement, and provides reasonable results.
- Score: 10.008264048021076
- License:
- Abstract: Advanced classification algorithms are being increasingly used in safety-critical applications like health-care, engineering, etc. In such applications, miss-classifications made by ML algorithms can result in substantial financial or health-related losses. To better anticipate and prepare for such losses, the algorithm user seeks an estimate for the probability that the algorithm miss-classifies a sample. We refer to this task as the risk-assessment. For a variety of models and datasets, we numerically analyze the performance of different methods in solving the risk-assessment problem. We consider two solution strategies: a) calibration techniques that calibrate the output probabilities of classification models to provide accurate probability outputs; and b) a novel approach based upon the prediction interval generation technique of conformal prediction. Our conformal prediction based approach is model and data-distribution agnostic, simple to implement, and provides reasonable results for a variety of use-cases. We compare the different methods on a broad variety of models and datasets.
Related papers
- Transfer learning via Regularized Linear Discriminant Analysis [2.321323878201932]
We present novel transfer learning methods via regularized random-effects linear discriminant analysis.
We derive the values of these weights and the associated classification error rates in the high-dimensional setting.
arXiv Detail & Related papers (2025-01-05T01:25:37Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
We focus on regression algorithms and the risk-assessment task of computing the probability of the true label lying inside an interval defined around the model's prediction.
We solve the risk-assessment problem using the conformal prediction approach, which provides prediction intervals that are guaranteed to contain the true label with a given probability.
arXiv Detail & Related papers (2023-10-05T13:57:24Z) - Reliability analysis of discrete-state performance functions via
adaptive sequential sampling with detection of failure surfaces [0.0]
The paper presents a new efficient and robust method for rare event probability estimation.
The method can estimate the probabilities of multiple failure types.
It can accommodate this information to increase the accuracy of the estimated probabilities.
arXiv Detail & Related papers (2022-08-04T05:59:25Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Variance based sensitivity analysis for Monte Carlo and importance
sampling reliability assessment with Gaussian processes [0.0]
We propose a methodology to quantify the sensitivity of the probability of failure estimator to two uncertainty sources.
This analysis also enables to control the whole error associated to the failure probability estimate and thus provides an accuracy criterion on the estimation.
The approach is proposed for both a Monte Carlo based method as well as an importance sampling based method, seeking to improve the estimation of rare event probabilities.
arXiv Detail & Related papers (2020-11-30T17:06:28Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
We propose a new variant of Linear Discriminant Analysis (LDA) to solve multi-label classification tasks.
The proposed method is based on a probabilistic model for defining the weights of individual samples.
The Saliency-based weighted Multi-label LDA approach is shown to lead to performance improvements in various multi-label classification problems.
arXiv Detail & Related papers (2020-04-08T19:40:53Z) - Probabilistic Diagnostic Tests for Degradation Problems in Supervised
Learning [0.0]
Problems such as class imbalance, overlapping, small-disjuncts, noisy labels, and sparseness limit accuracy in classification algorithms.
Probability diagnostic model based on identifying signs and symptoms of each problem is presented.
Behavior and performance of several supervised algorithms are studied when training sets have such problems.
arXiv Detail & Related papers (2020-04-06T20:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.