Towards scalable active steering protocols for genuinely entangled state manifolds
- URL: http://arxiv.org/abs/2412.04168v1
- Date: Thu, 05 Dec 2024 14:04:14 GMT
- Title: Towards scalable active steering protocols for genuinely entangled state manifolds
- Authors: Samuel Morales, Silvia Pappalardi, Reinhold Egger,
- Abstract summary: We introduce and analyze an active steering protocol designed to target multipartite entangled states.
Numerical simulations for systems with up to 20 qubits suggest that the protocol is scalable and allows high multipartite entanglement across the system.
- Score: 0.0
- License:
- Abstract: We introduce and analyze an active steering protocol designed to target multipartite entangled states. The protocol involves multiple qubits subjected to weak Bell pair measurements with active feedback, where the feedback operations are optimized to maximize the Quantum Fisher Information. Our scheme efficiently reaches a genuinely entangled one-parameter state manifold. Numerical simulations for systems with up to 20 qubits suggest that the protocol is scalable and allows high multipartite entanglement across the system.
Related papers
- Sequential information theoretic protocols in continuous variable systems [0.0]
We propose schemes for resource reusability, resource-splitting protocol and unsharp homodyne measurements.
We demonstrate the advantage offered by the first scheme in implementing sequential attempts at continuous variable teleportation when the protocol fails in the previous round.
We exhibit that, under specific conditions, it is possible to witness the entanglement of a state an arbitrary number of times via a scheme that differs significantly from any protocol proposed for finite dimensional systems.
arXiv Detail & Related papers (2024-10-19T08:23:16Z) - Hybrid Multi-Directional Quantum Communication Protocol [0.0]
We propose a hybrid multi-directional six-party scheme of implementing quantum teleportation and joint remote state preparation under the supervision of a controller.
We analytically derive the average fidelities of this hybrid scheme under the amplitude-damping and the phase-damping noise.
arXiv Detail & Related papers (2024-02-21T11:06:14Z) - Engineering unsteerable quantum states with active feedback [0.5892638927736115]
We propose active steering protocols for quantum state preparation in quantum circuits.
We show that the standard fidelity does not give a useful cost function; instead, successful steering is achieved by including local fidelity terms.
numerical simulations suggest that the active steering protocol can reach arbitrarily designated target states.
arXiv Detail & Related papers (2023-08-01T09:01:51Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Search for optimal driving in finite quantum systems with precursors of
criticality [0.0]
We design a hierarchy of quantum state preparation protocols that systematically increase the fidelity at very long driving times.
We test these and other protocols, including those based on the geometric analysis of the parameter space, in a single-qubit system and in a fully connected multi-qubit system.
arXiv Detail & Related papers (2022-10-13T13:39:51Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Quantum map approach to entanglement transfer and generation in spin
chains [0.0]
Quantum information processing protocols are efficiently implemented on spin-$frac12$ networks.
We reformulate widely investigated protocols, such as one-qubit quantum state transfer and two-qubit entanglement distribution, with the quantum map formalism.
arXiv Detail & Related papers (2021-12-04T14:32:26Z) - Reinforcement learning-enhanced protocols for coherent
population-transfer in three-level quantum systems [50.591267188664666]
We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer.
Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols.
The new protocols that we identify are robust against both energy losses and dephasing.
arXiv Detail & Related papers (2021-09-02T14:17:30Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.