論文の概要: Compliant Self Service Access to Secondary Use Clinical Data at Stanford Medicine
- arxiv url: http://arxiv.org/abs/2412.04248v1
- Date: Thu, 05 Dec 2024 15:29:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:34.399629
- Title: Compliant Self Service Access to Secondary Use Clinical Data at Stanford Medicine
- Title(参考訳): スタンフォード医科における二次臨床データへのコンピレントセルフサービスアクセス
- Authors: SC Weber, J Pallas, G Olson, D Love, S Malunjkar, S Boosi, E Loh, S Datta, TA Ferris,
- Abstract要約: STARR (STAnford Research Repository) は、スタンフォード大学における基礎科学研究、人口健康研究、翻訳研究を支援する臨床研究支援エコシステムである。
STARRは、生データと分析可能なマルチモーダルデータと、コホート分析とセルフサービスデータアクセスのためのツールで構成される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: STARR (STAnford Research Repository) is a clinical research support ecosystem that supports basic science research, population health research and translational research at Stanford University. STARR consists of raw and analysis ready multi-modal data, and tools for cohort analysis and self service data access. STARR data is accessible on secure shared computing systems for ad hoc analysis. Also present is a suite of services on top of STARR, that allow researchers access to complex purpose built data cuts, common data models and software solutions. This manuscript is a research resource description and describes the evolution of STARR Tools that are used to offer self-service access to detailed clinical data for research purposes to researchers at Stanford Medicine, along with a framework used to ensure that data acquired via the self-service tools is handled in compliance with all applicable regulations and rules.
- Abstract(参考訳): STARR (STAnford Research Repository) は、スタンフォード大学における基礎科学研究、人口健康研究、翻訳研究を支援する臨床研究支援エコシステムである。
STARRは、生データと分析可能なマルチモーダルデータと、コホート分析とセルフサービスデータアクセスのためのツールで構成される。
STARRデータは、アドホック解析のためのセキュアな共有コンピューティングシステムでアクセス可能である。
また、STARRの上に一連のサービスがあり、研究者は複雑なデータカット、一般的なデータモデル、ソフトウェアソリューションにアクセスすることができる。
この原稿は研究資源の記述であり、スタンフォード大学の研究者に研究目的のための詳細な臨床データへのセルフサービスアクセスを提供するために使用されるSTARRツールの進化と、セルフサービスツールを介して取得されたデータが、すべての適用規則や規則に従って処理されることを保証するためのフレームワークについて記述している。
関連論文リスト
- Pennsieve: A Collaborative Platform for Translational Neuroscience and Beyond [0.5130659559809153]
Pennsieveはオープンソースでクラウドベースの科学データ管理プラットフォームである。
複雑なマルチモーダルデータセットをサポートし、データの視覚化と分析のためのツールを提供する。
Pennsieveは125TB以上の科学的データを格納し、350以上のハイインパクトデータセットで35TB以上のデータを公開している。
論文 参考訳(メタデータ) (2024-09-16T17:55:58Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - Automated Extraction and Maturity Analysis of Open Source Clinical Informatics Repositories from Scientific Literature [0.0]
本研究では、arXivにインデックスされた学術論文からGitHubリポジトリURLを体系的に抽出することにより、ギャップを埋める自動化手法を提案する。
当社のアプローチでは、関連論文に対するarXiv APIのクエリ、抽出したGitHub URLのクリーニング、GitHub APIによる包括的なリポジトリ情報の取得、スター、フォーク、オープンイシュー、コントリビュータなどの定義されたメトリクスに基づいてリポジトリの成熟度を分析しています。
論文 参考訳(メタデータ) (2024-03-20T17:06:51Z) - GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training
Data Exploration [97.68234051078997]
我々はPyseriniを、オープンソースのAIライブラリとアーティファクトのHugging Faceエコシステムに統合する方法について論じる。
Jupyter NotebookベースのウォークスルーがGitHubで公開されている。
GAIA Search - 前述した原則に従って構築された検索エンジンで、人気の高い4つの大規模テキストコレクションへのアクセスを提供する。
論文 参考訳(メタデータ) (2023-06-02T12:09:59Z) - Mapping Climate Change Research via Open Repositories & AI: advantages
and limitations for an evidence-based R&D policy-making [0.0]
ここ数年、いくつかのイニシアチブが、オープンな方法で研究出力データとメタデータへのアクセスを提供し始めている。
これらのプラットフォームは科学的な生産を一般大衆に開放しており、エビデンスベースの政策決定にとって貴重な資産となり得る。
STIのエコシステム全体を包括的に把握するためには、これらのリソースのそれぞれが提供する情報を組み合わせて分析する必要がある。
本稿では,デンマークのSTIエコシステム全体の気候活動研究を4つのオープンアクセスSTIデータソースを用いてマッピングする場合について検討する。
論文 参考訳(メタデータ) (2022-09-19T12:56:30Z) - An Assessment Tool for Academic Research Managers in the Third World [125.99533416395765]
一方のベースにあるデータが、もう一方のインデックスを推測するためにどのように使用できるかを示す。
SCOPUSの情報はWebから自由に取り除くことができるので、このアプローチは出版物のインパクトファクターを自由に推論することができる。
論文 参考訳(メタデータ) (2022-09-07T14:59:25Z) - DeepShovel: An Online Collaborative Platform for Data Extraction in
Geoscience Literature with AI Assistance [48.55345030503826]
地質学者は、関連する結果やデータを発見、抽出、集約するために膨大な量の文献を読む必要がある。
DeepShovelは、彼らのニーズをサポートするAI支援データ抽出システムである。
14人の研究者によるユーザ評価の結果、DeepShovelは科学データベース構築のためのデータ抽出の効率を改善した。
論文 参考訳(メタデータ) (2022-02-21T12:18:08Z) - Wizard of Search Engine: Access to Information Through Conversations
with Search Engines [58.53420685514819]
我々は3つの側面からCISの研究を促進するために努力している。
目的検出(ID)、キーフレーズ抽出(KE)、行動予測(AP)、クエリ選択(QS)、通過選択(PS)、応答生成(RG)の6つのサブタスクでCIS用のパイプラインを定式化する。
検索エンジンのウィザード(WISE)と呼ばれるベンチマークデータセットをリリースし、CISのすべての側面について包括的かつ詳細な調査を可能にします。
論文 参考訳(メタデータ) (2021-05-18T06:35:36Z) - Challenges in biomarker discovery and biorepository for Gulf-war-disease
studies: a novel data platform solution [48.7576911714538]
ROSALINDという新しいデータプラットフォームを導入し、課題を克服し、健全で重要なコラボレーションを育み、科学的調査を進めます。
ROSALINDは、自己管理されたアクセシビリティ、リンク性、可積分性、中立性、信頼性を持つリソース有機体を指します。
過去12ヶ月のGWI研究におけるROSALINDの展開により、データ実験と分析のペースが加速し、多数のエラーソースが削除され、研究品質と生産性が向上しました。
論文 参考訳(メタデータ) (2021-02-04T20:38:30Z) - A new paradigm for accelerating clinical data science at Stanford
Medicine [1.3814679165245243]
Stanford Medicineは、私たちの学術研究コミュニティがより良い臨床データサイエンスを行うための、新しいデータプラットフォームを構築している。
病院には大量の患者データがあり、研究者はそのデータとAIアプローチを再利用できることを実証している。
私たちは、データにアクセスし分析する時間を短縮することを目的とした、新しいセキュアなビッグデータプラットフォームを構築しています。
論文 参考訳(メタデータ) (2020-03-17T16:21:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。