Densing Law of LLMs
- URL: http://arxiv.org/abs/2412.04315v2
- Date: Fri, 06 Dec 2024 11:39:27 GMT
- Title: Densing Law of LLMs
- Authors: Chaojun Xiao, Jie Cai, Weilin Zhao, Guoyang Zeng, Biyuan Lin, Jie Zhou, Zhi Zheng, Xu Han, Zhiyuan Liu, Maosong Sun,
- Abstract summary: Large Language Models (LLMs) have emerged as a milestone in artificial intelligence, and their performance can improve as the model size increases.<n>This paper introduces the concept of textitcapacity density'' as a new metric to evaluate the quality of the LLMs across different scales.
- Score: 81.06644243978101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have emerged as a milestone in artificial intelligence, and their performance can improve as the model size increases. However, this scaling brings great challenges to training and inference efficiency, particularly for deploying LLMs in resource-constrained environments, and the scaling trend is becoming increasingly unsustainable. This paper introduces the concept of ``\textit{capacity density}'' as a new metric to evaluate the quality of the LLMs across different scales and describes the trend of LLMs in terms of both effectiveness and efficiency. To calculate the capacity density of a given target LLM, we first introduce a set of reference models and develop a scaling law to predict the downstream performance of these reference models based on their parameter sizes. We then define the \textit{effective parameter size} of the target LLM as the parameter size required by a reference model to achieve equivalent performance, and formalize the capacity density as the ratio of the effective parameter size to the actual parameter size of the target LLM. Capacity density provides a unified framework for assessing both model effectiveness and efficiency. Our further analysis of recent open-source base LLMs reveals an empirical law (the densing law)that the capacity density of LLMs grows exponentially over time. More specifically, using some widely used benchmarks for evaluation, the capacity density of LLMs doubles approximately every three months. The law provides new perspectives to guide future LLM development, emphasizing the importance of improving capacity density to achieve optimal results with minimal computational overhead.
Related papers
- Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
Building effective Transformer-based large language models (LLMs) has recently become a research focus.
We compare models with different parameter sizes, context lengths, and attention head configurations in terms of model performance, computational cost, and memory cost.
Our studies show that, when processing sufficiently long sequences, a larger model with fewer attention heads can achieve a lower loss while incurring lower computational and memory costs.
arXiv Detail & Related papers (2025-03-12T17:50:42Z) - Quantizing Large Language Models for Code Generation: A Differentiated Replication [51.85505914274633]
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language.
LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint.
New frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70%.
arXiv Detail & Related papers (2025-03-10T09:26:08Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Performance Law of Large Language Models [58.32539851241063]
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources.
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
arXiv Detail & Related papers (2024-08-19T11:09:12Z) - A Performance Study of LLM-Generated Code on Leetcode [1.747820331822631]
This study evaluates the efficiency of code generation by Large Language Models (LLMs)
We compare 18 LLMs, considering factors such as model temperature and success rate, and their impact on code performance.
We find that LLMs are capable of generating code that is, on average, more efficient than the code written by humans.
arXiv Detail & Related papers (2024-07-31T13:10:03Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - A Comprehensive Evaluation of Quantization Strategies for Large Language Models [42.03804933928227]
Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs.
Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular.
We propose a structured evaluation framework consisting of three critical dimensions: knowledge & capacity, (2) alignment, and (3) efficiency.
arXiv Detail & Related papers (2024-02-26T17:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.