論文の概要: Generative-Model-Based Fully 3D PET Image Reconstruction by Conditional Diffusion Sampling
- arxiv url: http://arxiv.org/abs/2412.04319v1
- Date: Thu, 05 Dec 2024 16:35:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:38.176084
- Title: Generative-Model-Based Fully 3D PET Image Reconstruction by Conditional Diffusion Sampling
- Title(参考訳): 条件拡散サンプリングによるモデルベースフル3次元PET画像再構成
- Authors: George Webber, Yuya Mizuno, Oliver D. Howes, Alexander Hammers, Andrew P. King, Andrew J. Reader,
- Abstract要約: 我々は、全数参照脳画像に基づいてSGMを訓練し、SGMベースの再構成を極めて少ない回数で行えるように方法論を拡張した。
次に、1%カウントデータの複数の独立実現のための再構成を行い、その手法のバイアス特性と分散特性を分析する。
我々は,本手法の性能を実測値と実測値のPETデータで評価し,従来のOSEMおよびMAP-EMベースラインと比較した。
- 参考スコア(独自算出の注目度): 40.34650079545031
- License:
- Abstract: Score-based generative models (SGMs) have recently shown promising results for image reconstruction on simulated positron emission tomography (PET) datasets. In this work we have developed and implemented practical methodology for 3D image reconstruction with SGMs, and perform (to our knowledge) the first SGM-based reconstruction of real fully 3D PET data. We train an SGM on full-count reference brain images, and extend methodology to allow SGM-based reconstructions at very low counts (1% of original, to simulate low-dose or short-duration scanning). We then perform reconstructions for multiple independent realisations of 1% count data, allowing us to analyse the bias and variance characteristics of the method. We sample from the learned posterior distribution of the generative algorithm to calculate uncertainty images for our reconstructions. We evaluate the method's performance on real full- and low-count PET data and compare with conventional OSEM and MAP-EM baselines, showing that our SGM-based low-count reconstructions match full-dose reconstructions more closely and in a bias-variance trade-off comparison, our SGM-reconstructed images have lower variance than existing baselines. Future work will compare to supervised deep-learned methods, with other avenues for investigation including how data conditioning affects the SGM's posterior distribution and the algorithm's performance with different tracers.
- Abstract(参考訳): SGM(Score-based Generative Model)は先日,PET(simulated positron emission tomography)データセットにおける画像再構成の有望な結果を示した。
本研究は,SGMを用いた3次元画像再構成の実践的手法を開発し,実完全3次元PETデータの最初のSGMによる再構成を行う。
フルカウント参照脳画像に基づいてSGMを訓練し、SGMベースの再構成を非常に少ない回数で行うための方法論を拡張した(原画像の1%は低線量または短距離走査をシミュレートする)。
次に、1%カウントデータの複数の独立実現のための再構成を行い、その手法のバイアス特性と分散特性を分析する。
生成アルゴリズムの学習後分布からサンプルを採取し、再構成のための不確実性画像を算出する。
我々は,本手法の性能を実時間・実時間PETデータと比較し,従来のOSEMおよびMAP-EMベースラインと比較した。
今後の研究は、教師付きディープラーニング手法と、データコンディショニングがSGMの後部分布にどのように影響するかや、異なるトレーサを用いたアルゴリズムのパフォーマンスなど、他の調査方法と比較する予定である。
関連論文リスト
- Data-iterative Optimization Score Model for Stable Ultra-Sparse-View CT
Reconstruction [2.2336243882030025]
スパースビューCT再構成のための反復最適化データスコアリングモデル(DOSM)を提案する。
DOSMはデータの一貫性をデータ一貫性要素に統合し、測定データと生成モデルの制約を効果的にバランスさせる。
我々はDOSM更新の最適化に従来の手法を活用している。
論文 参考訳(メタデータ) (2023-08-28T09:23:18Z) - Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement [14.973360669658561]
本稿では,自己教師付き変分オートエンコーダアーキテクチャであるHetACUMNを提案する。
シミュレーションデータセットの結果,HetACUMNは,他のアモータイズ法や非アモータイズ法よりも正確なコンフォメーション分類が得られた。
論文 参考訳(メタデータ) (2023-08-09T13:41:30Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Fully 3D Implementation of the End-to-end Deep Image Prior-based PET
Image Reconstruction Using Block Iterative Algorithm [0.0]
Deep Image prior (DIP) はPET画像再構成により注目されている。
本稿では, エンドツーエンドDIPベースの完全3次元PET画像再構成手法の実装を初めて試みる。
論文 参考訳(メタデータ) (2022-12-22T16:25:58Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
畳み込みニューラルネットワーク(CNN)は近年,PET画像再構成において顕著な性能を発揮している。
深層画像前処理を組み込んだ非教師なし直接PET画像再構成手法を提案する。
提案手法は,非教師なしPET画像再構成を実現するために,損失関数付き前方投影モデルを組み込んだ。
論文 参考訳(メタデータ) (2021-09-02T08:07:58Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z) - Learning Nonparametric Human Mesh Reconstruction from a Single Image
without Ground Truth Meshes [56.27436157101251]
そこで本研究では,人間のメッシュ再構築を基礎となる真理メッシュを使わずに学習する手法を提案する。
これはグラフ畳み込みニューラルネットワーク(Graph CNN)の損失関数に2つの新しい用語を導入することで実現される。
論文 参考訳(メタデータ) (2020-02-28T20:30:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。