論文の概要: Bayesian Quantum Amplitude Estimation
- arxiv url: http://arxiv.org/abs/2412.04394v2
- Date: Wed, 09 Jul 2025 15:49:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 15:30:51.958234
- Title: Bayesian Quantum Amplitude Estimation
- Title(参考訳): ベイズ量子振幅推定
- Authors: Alexandra Ramôa, Luis Paulo Santos,
- Abstract要約: 量子振幅推定のための問題調整およびノイズ認識ベイズアルゴリズムであるBAEを提案する。
耐障害性シナリオでは、BAEはハイゼンベルク限界を飽和させることができ、デバイスノイズが存在する場合、BAEはそれを動的に特徴付け、自己適応することができる。
本稿では,振幅推定アルゴリズムのベンチマークを提案し,他の手法に対してBAEをテストする。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation. In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt. We further propose aBAE, an annealed variant of BAE drawing on methods from statistical inference, to enhance robustness. Our proposals are parallelizable in both quantum and classical components, offer tools for fast noise model assessment, and can leverage preexisting information. Additionally, they accommodate experimental limitations and preferred cost trade-offs. We propose a robust benchmark for amplitude estimation algorithms and use it to test BAE against other approaches, demonstrating its competitive performance in both noisy and noiseless scenarios. In both cases, it achieves lower error than any other algorithm as a function of the cost. In the presence of decoherence, it is capable of learning when other algorithms fail.
- Abstract(参考訳): 量子振幅推定のための問題調整およびノイズ認識ベイズアルゴリズムであるBAEを提案する。
耐障害性シナリオでは、BAEはハイゼンベルク限界を飽和させることができ、デバイスノイズが存在する場合、BAEはそれを動的に特徴付け、自己適応することができる。
さらに,統計的推測法に基づくBAEの焼鈍版であるaBAEを提案し,ロバスト性を高める。
我々の提案は量子と古典の両方で並列化可能であり、高速ノイズモデル評価のためのツールを提供し、既存の情報を活用することができる。
さらに、実験的な制限と、コストトレードオフが望ましい。
本稿では、振幅推定アルゴリズムの頑健なベンチマークを提案し、他の手法に対するBAEのテストに使用し、ノイズのないシナリオとノイズのないシナリオの両方において、その競合性能を実証する。
どちらの場合も、コストの関数として他のどのアルゴリズムよりも低い誤差を達成する。
デコヒーレンスの存在下では、他のアルゴリズムが失敗したときに学習することができる。
関連論文リスト
- Computational Performance Bounds Prediction in Quantum Computing with Unstable Noise [6.6884244790434195]
量子デバイスにおけるノイズは、この優位性を実現する上で重要な障壁となる。
次世代の量子中心型スーパーコンピュータは本質的に、効率的で正確なノイズ特性を必要とする。
計算性能境界を予測するために,QuBoundというデータ駆動型ワークフローを提案する。
論文 参考訳(メタデータ) (2025-07-22T22:00:09Z) - Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
本稿では,誤差確率の指数的減衰を保証し,最適な腕識別のための新しいアルゴリズムを提案する。
我々は,複雑性のレベルが異なる様々な問題インスタンスに対する包括的経験的評価を通じて,アルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2025-06-03T02:56:26Z) - Disambiguating Pauli noise in quantum computers [5.9039349711987645]
学習可能なパラメータが自己整合的に特徴づけられる場合、学習不可能な(ゲージ)自由度はノイズダイナミクスやエラー軽減の予測に影響を与えないことを示す。
我々は,最近導入されたゲートセットパウリ雑音学習の枠組みを用いて,完全ゲートセットの雑音を効率よく自己整合的に特徴付け,緩和する。
論文 参考訳(メタデータ) (2025-05-28T17:46:17Z) - Non-Markovian Noise Mitigation: Practical Implementation, Error Analysis, and the Role of Environment Spectral Properties [3.1003326924534482]
非マルコフ雑音に対するQEMフレームワークにおける確率的誤差キャンセル(PEC)法を拡張して非マルコフ雑音除去(NMNM)法を提案する。
我々は,QEMの全体近似誤差とサンプリングオーバーヘッドと環境のスペクトル特性との直接接続を確立する。
論文 参考訳(メタデータ) (2025-01-09T07:22:06Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Optimal Quantum Purity Amplification [2.05170973574812]
量子純度増幅(QPA)は、量子状態の劣化に対処する新しいアプローチを提供する。
本稿では,大域的偏極雑音に対する一般量子システムに対する最適QPAプロトコルを提案する。
この結果から,QPAは量子情報処理タスクの性能を向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-26T17:46:00Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Negative Pre-aware for Noisy Cross-modal Matching [46.5591267410225]
雑音対応は認識と修正が難しいため,クロスモーダルノイズロバスト学習は難しい課題である。
本稿では,雑音の多い下流タスクに対する大規模視覚言語モデルファインタニングのための,否定的事前認識型クロスモーダルマッチングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:52:36Z) - Error-mitigated fermionic classical shadows on noisy quantum devices [0.3775283002059579]
古典的シャドウ (CS) アルゴリズムは、必要な量子状態コピー数を減らして解を提供する。
本稿では,ゲート独立性,時間定常性,マルコフ雑音(GTM)を仮定した誤り緩和型CSアルゴリズムを提案する。
提案アルゴリズムは,GTMノイズに対する$widetildemathcal O(knk)$状態コピーと$widetildemathcal O(sqrtn)$キャリブレーションによる$k$-RDMを効率的に推定する。
論文 参考訳(メタデータ) (2023-10-19T13:27:19Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - Superposed Quantum Error Mitigation [1.732837834702512]
ノイズや不完全性の影響を克服することは、量子コンピューティングにおける大きな課題である。
本稿では,利害関係と一部の補助状態の重ね合わせにおいて,所望のユニタリ計算を適用するアプローチを提案する。
我々は、IBM Quantum Platform上で、同じ動作の並列適用が大きなノイズ軽減につながることを実証した。
論文 参考訳(メタデータ) (2023-04-17T18:01:01Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
量子モデルは暗黙の確率予測器を実装し、測定ショットを通じて各入力に対して複数のランダムな決定を生成する。
本稿では、そのようなランダム性を利用して、モデルの不確実性を確実に捉えることができる分類と回帰の両方の予測セットを定義することを提案する。
論文 参考訳(メタデータ) (2023-04-06T22:05:21Z) - Hybrid quantum gap estimation algorithm using a filtered time series [0.0]
我々は、古典的な後処理、すなわち、オフライン時系列の長時間フィルタリングが、量子時間進化に必要な回路深さを指数関数的に改善することを証明する。
本手法をハイブリッド量子古典アルゴリズムの構築に適用し,エネルギーギャップを推定する。
我々の発見は、短期的にメモリの優位性を提供するために、非バイアス量子シミュレーションのステージを設定した。
論文 参考訳(メタデータ) (2022-12-28T18:59:59Z) - Self-protected quantum simulation and quantum phase estimation in the
presence of classical noise [0.0]
本研究では,古典的雑音に免疫する自己保護量子シミュレーションを提案する。
読み出しのために、従来の量子位相推定を古典雑音の存在下でのアップグレード版に一般化する。
論文 参考訳(メタデータ) (2022-12-07T14:30:47Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
雑音の緩和は、上界を導出する誤差まで行うことができる。
ノイズモデルとエラー軽減スキームの両方をテストするためにIBMのデバイスを使用した15(23)量子ビットの実験。
浅層深度ランダム回路によって生成されるHaar-random量子状態と状態に対して、同様の効果が期待できることを示す。
論文 参考訳(メタデータ) (2021-01-07T02:19:58Z) - Evaluating the noise resilience of variational quantum algorithms [0.0]
変動量子アルゴリズムの状態準備回路における異なる種類のノイズの影響をシミュレートする。
冗長なパラメータ化ゲートを組み込むことで、量子回路のノイズ耐性が向上することがわかった。
論文 参考訳(メタデータ) (2020-11-02T16:56:58Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
論文 参考訳(メタデータ) (2020-04-24T17:58:10Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
本稿では,QAOAの変動パラメータをノイズキャンバス方式で最適化するために,政策段階に基づく強化学習アルゴリズムが適していることを示す。
単一および多ビット系における量子状態伝達問題に対するアルゴリズムの性能解析を行う。
論文 参考訳(メタデータ) (2020-02-04T00:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。