論文の概要: Emergent unitary designs for encoded qubits from coherent errors and syndrome measurements
- arxiv url: http://arxiv.org/abs/2412.04414v1
- Date: Thu, 05 Dec 2024 18:36:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:11.053775
- Title: Emergent unitary designs for encoded qubits from coherent errors and syndrome measurements
- Title(参考訳): コヒーレントエラーとシンドローム測定による符号化量子ビットの創発的ユニタリ設計
- Authors: Zihan Cheng, Eric Huang, Vedika Khemani, Michael J. Gullans, Matteo Ippoliti,
- Abstract要約: 曲面符号における符号化量子ビットのユニタリ設計を効率よく生成する手法を提案する。
論理的ユニタリのアンサンブルが熱力学限界におけるユニタリ設計に収束することを数値的に示す。
本結果は,符号化量子ビット上のユニタリ設計を実現するための実用的な方法を提供する。
- 参考スコア(独自算出の注目度): 1.8854166566682866
- License:
- Abstract: Unitary $k$-designs are distributions of unitary gates that match the Haar distribution up to its $k$-th statistical moment. They are a crucial resource for randomized quantum protocols. However, their implementation on encoded logical qubits is nontrivial due to the need for magic gates, which can require a large resource overhead. In this work, we propose an efficient approach to generate unitary designs for encoded qubits in surface codes by applying local unitary rotations ("coherent errors") on the physical qubits followed by syndrome measurement and error correction. We prove that under some conditions on the coherent errors (notably including all single-qubit unitaries) and on the error correcting code, this process induces a unitary transformation of the logical subspace. We numerically show that the ensemble of logical unitaries (indexed by the random syndrome outcomes) converges to a unitary design in the thermodynamic limit, provided the density or strength of coherent errors is above a finite threshold. This "unitary design" phase transition coincides with the code's coherent error threshold under optimal decoding. Furthermore, we propose a classical algorithm to simulate the protocol based on a "staircase" implementation of the surface code encoder and decoder circuits. This enables a mapping to a 1+1D monitored circuit, where we observe an entanglement phase transition (and thus a classical complexity phase transition of the decoding algorithm) coinciding with the aforementioned unitary design phase transition. Our results provide a practical way to realize unitary designs on encoded qubits, with applications including quantum state tomography and benchmarking in error correcting codes.
- Abstract(参考訳): 単位$k$-designsは、Haar分布に一致するユニタリゲートの分布である。
これらはランダム化された量子プロトコルにとって重要なリソースである。
しかし、エンコードされた論理量子ビットへの実装は、大きなリソースオーバーヘッドを必要とするマジックゲートを必要とするため、簡単ではない。
本研究では,物理量子ビットに局所的ユニタリ回転(コヒーレント・エラー)を適用し,その次にシンドローム計測と誤り訂正を行うことにより,表面符号中の符号化量子ビットのユニタリ設計を効率的に生成する手法を提案する。
我々は、コヒーレントなエラー(特に全ての単一キュービットのユニタリを含む)と誤り訂正符号の条件下では、このプロセスは論理部分空間のユニタリ変換を誘導することを示した。
連接誤差の密度や強度が有限しきい値を超えると、(ランダムシンドロームの結果によって示される)論理的ユニタリのアンサンブルが熱力学限界におけるユニタリ設計に収束することが数値的に示される。
この「単体設計」相転移は、最適な復号化の下でのコードのコヒーレントエラー閾値と一致する。
さらに、サーフェスコードエンコーダとデコーダ回路の「階段」実装に基づいてプロトコルをシミュレートする古典的アルゴリズムを提案する。
これにより、1+1Dモニタ回路へのマッピングが可能となり、前述のユニタリ設計相転移と一致する絡み合い相転移(したがって復号アルゴリズムの古典的複雑性相転移)が観測される。
本研究は,量子状態トモグラフィや誤り訂正符号のベンチマークなどの応用により,符号化量子ビットのユニタリ設計を実現するための実用的な方法である。
関連論文リスト
- Developing universal logical state-purification strategy for quantum error correcting codes [0.0]
我々は、単位忠実度と有限確率を持つ多重量子誤り訂正符号において、任意の論理状態を同時に浄化するプロトコルを開発する。
このプロトコルは、技術者のハミルトニアンによって引き起こされる時間進化を伴い、量子誤り訂正符号の論理部分空間と誤り部分空間の間の遷移を補助量子ビットによって伝達する。
量子状態移動における論理的クビットに対応する論理的ブロッホ球の基数状態の浄化は、時間進化の生成元としてパラダイム的量子スピンモデルを用いて実現可能であることを示す。
論文 参考訳(メタデータ) (2025-02-03T14:24:25Z) - Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits [31.25958618453706]
2つの距離3の繰り返し符号量子ビット間の格子手術を1つの距離3の曲面符号量子ビットに分割して示す。
我々は、類似の非符号化回路と比較して、復号化$ZZ$論理2ビットオブザーバブルの値を改善する。
論文 参考訳(メタデータ) (2025-01-08T16:49:27Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
非クリフォードゲートのこのオーバーヘッドを低減するためのプロトコルを導入する。
予備的な結果は、より広い距離で高品質な忠実さを示唆している。
論文 参考訳(メタデータ) (2022-11-18T06:03:10Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。