論文の概要: Four-Plane Factorized Video Autoencoders
- arxiv url: http://arxiv.org/abs/2412.04452v1
- Date: Thu, 05 Dec 2024 18:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:26.681619
- Title: Four-Plane Factorized Video Autoencoders
- Title(参考訳): 4面分解型ビデオオートエンコーダ
- Authors: Mohammed Suhail, Carlos Esteves, Leonid Sigal, Ameesh Makadia,
- Abstract要約: 本稿では,入力サイズと直交的に成長する4平面の因数分解潜在空間にデータを投影するオートエンコーダを提案する。
提案した4面ラテント空間は高忠実度再構成に必要なリッチな表現を保っていることを示す。
- 参考スコア(独自算出の注目度): 44.00676320678128
- License:
- Abstract: Latent variable generative models have emerged as powerful tools for generative tasks including image and video synthesis. These models are enabled by pretrained autoencoders that map high resolution data into a compressed lower dimensional latent space, where the generative models can subsequently be developed while requiring fewer computational resources. Despite their effectiveness, the direct application of latent variable models to higher dimensional domains such as videos continues to pose challenges for efficient training and inference. In this paper, we propose an autoencoder that projects volumetric data onto a four-plane factorized latent space that grows sublinearly with the input size, making it ideal for higher dimensional data like videos. The design of our factorized model supports straightforward adoption in a number of conditional generation tasks with latent diffusion models (LDMs), such as class-conditional generation, frame prediction, and video interpolation. Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions despite the heavy compression, while simultaneously enabling LDMs to operate with significant improvements in speed and memory.
- Abstract(参考訳): 潜在変数生成モデルは、画像合成やビデオ合成を含む生成タスクのための強力なツールとして登場した。
これらのモデルは、高解像度データを圧縮された低次元潜在空間にマッピングする事前訓練されたオートエンコーダによって実現され、そこでは、計算資源を少なくしながら生成モデルを開発することができる。
その効果にもかかわらず、ビデオのような高次元領域への潜伏変数モデルの直接適用は、効率的なトレーニングと推論の課題を呈し続けている。
本稿では,ビデオのような高次元データに最適な4面係数化潜在空間に体積データを投影するオートエンコーダを提案する。
因子化モデルの設計は,クラス条件生成,フレーム予測,ビデオ補間など,遅延拡散モデル(LDM)を用いた複数の条件生成タスクにおいて,容易に適用できる。
これらの結果から,提案した4面ラテント空間は,高圧縮にもかかわらず高忠実度再構成に必要な表現が豊富であり,同時にLCDの動作速度とメモリの大幅な向上を図っている。
関連論文リスト
- LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiTは、20以上のコンピュータビジョンタスクを生成フレームワークで扱うために設計された、スケーラブルで統一された基盤モデルである。
視覚タスクの生成性能を最適化するための重要なイノベーションを紹介する。
このモデルは0.1Bから3.4Bのパラメータに拡張され、様々な視覚タスクにまたがる相当なスケーラビリティと最先端の性能を示す。
論文 参考訳(メタデータ) (2024-11-18T12:05:27Z) - ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation [83.62931466231898]
本稿では,長期ビデオ生成のための自己回帰モデルを用いた拡散変換器を高速化するフレームワークARLONを提案する。
潜在ベクトル量子変分オートコーダ(VQ-VAE)は、DiTモデルの入力潜時空間をコンパクトなビジュアルトークンに圧縮する。
適応ノルムベースのセマンティックインジェクションモジュールは、ARモデルから粗い離散視覚ユニットをDiTモデルに統合する。
論文 参考訳(メタデータ) (2024-10-27T16:28:28Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
ビデオ処理の課題に対処するための4つの重要なコントリビューションを提示する。
まず,3次元逆ベクトル量子化バリエンコエンコオートコーダを紹介する。
次に,テキスト・ビデオ生成フレームワークであるMotionAuraを紹介する。
第3に,スペクトル変換器を用いたデノナイジングネットワークを提案する。
第4に,Sketch Guided Videopaintingのダウンストリームタスクを導入する。
論文 参考訳(メタデータ) (2024-10-10T07:07:56Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
本稿では,長期的空間的および時間的依存関係に対処する新しいビデオ生成モデルを提案する。
提案手法は,3次元認識型生成フレームワークにインスパイアされた,明示的で単純化された3次元平面のハイブリッド表現を取り入れたものである。
我々のモデルは高精細度ビデオクリップを解像度256時間256$ピクセルで合成し、フレームレート30fpsで5ドル以上まで持続する。
論文 参考訳(メタデータ) (2024-01-11T16:48:44Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
本稿では,高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細映像・高精細映像・高精細・高精細・高精細・高精細・高精細・高精細
我々は,テキスト・ツー・イメージ・プレトレーニング,ビデオ・プレトレーニング,高品質ビデオファインタニングの3つの異なる段階を同定し,評価する。
論文 参考訳(メタデータ) (2023-11-25T22:28:38Z) - Video Probabilistic Diffusion Models in Projected Latent Space [75.4253202574722]
我々は、PVDM(Latent Video diffusion model)と呼ばれる新しいビデオ生成モデルを提案する。
PVDMは低次元の潜伏空間で映像配信を学習し、限られた資源で高解像度映像を効率的に訓練することができる。
論文 参考訳(メタデータ) (2023-02-15T14:22:34Z) - Greedy Hierarchical Variational Autoencoders for Large-Scale Video
Prediction [79.23730812282093]
本稿では,階層型オートエンコーダの各レベルを厳格に訓練することにより,高忠実度映像予測を学習するGreedy Hierarchical Variational Autoencoders(GHVAEs)を紹介する。
GHVAEは4つのビデオデータセットで予測性能が17~55%向上し、実際のロボットタスクで35~40%向上し、モジュールを追加するだけでパフォーマンスを単調に改善することができる。
論文 参考訳(メタデータ) (2021-03-06T18:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。