Advancing Marine Heatwave Forecasts: An Integrated Deep Learning Approach
- URL: http://arxiv.org/abs/2412.04475v1
- Date: Tue, 19 Nov 2024 06:11:52 GMT
- Title: Advancing Marine Heatwave Forecasts: An Integrated Deep Learning Approach
- Authors: Ding Ning, Varvara Vetrova, Yun Sing Koh, Karin R. Bryan,
- Abstract summary: Extreme climate phenomenon heatwaves (MHWs) pose significant challenges to marine ecosystems and industries.
This study introduces an integrated deep learning approach to forecast short-to-long-term MHWs on a global scale.
- Score: 3.8713566366330325
- License:
- Abstract: Marine heatwaves (MHWs), an extreme climate phenomenon, pose significant challenges to marine ecosystems and industries, with their frequency and intensity increasing due to climate change. This study introduces an integrated deep learning approach to forecast short-to-long-term MHWs on a global scale. The approach combines graph representation for modeling spatial properties in climate data, imbalanced regression to handle skewed data distributions, and temporal diffusion to enhance forecast accuracy across various lead times. To the best of our knowledge, this is the first study that synthesizes three spatiotemporal anomaly methodologies to predict MHWs. Additionally, we introduce a method for constructing graphs that avoids isolated nodes and provide a new publicly available sea surface temperature anomaly graph dataset. We examine the trade-offs in the selection of loss functions and evaluation metrics for MHWs. We analyze spatial patterns in global MHW predictability by focusing on historical hotspots, and our approach demonstrates better performance compared to traditional numerical models in regions such as the middle south Pacific, equatorial Atlantic near Africa, south Atlantic, and high-latitude Indian Ocean. We highlight the potential of temporal diffusion to replace the conventional sliding window approach for long-term forecasts, achieving improved prediction up to six months in advance. These insights not only establish benchmarks for machine learning applications in MHW forecasting but also enhance understanding of general climate forecasting methodologies.
Related papers
- Improved Forecasts of Global Extreme Marine Heatwaves Through a Physics-guided Data-driven Approach [6.881917151193729]
Marine heatwaves (MHWs) have a profound impact on marine ecosystems.
We create a novel deep learning neural network that is capable of accurate 10-day MHW forecasting.
Our framework has significantly higher accuracy and requires fewer computational resources.
arXiv Detail & Related papers (2024-12-20T03:47:56Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts [0.0]
We introduce an interpretable-by-design method, optimized model-analog, that integrates deep learning with model-analog forecasting.
We evaluate our approach using the Community Earth System Model Version 2 Large Ensemble to forecast the El Nino-Southern Oscillation (ENSO) on a seasonal-to-annual time scale.
Results show a 10% improvement in forecasting equatorial Pacific sea surface temperature anomalies at 9-12 months leads.
arXiv Detail & Related papers (2024-04-23T18:10:18Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
We introduce a novel strategy that deviates from the common dependence on high-resolution data.
This paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing.
Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions.
arXiv Detail & Related papers (2024-02-13T03:01:22Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Intelligent model for offshore China sea fog forecasting [0.7503129292751938]
This study aims to develop an advanced sea fog forecasting method embedded in a numerical weather prediction model.
We employ a time-lagged correlation analysis technique to identify key predictors and decipher the underlying mechanisms driving sea fog occurrence.
To verify the accuracy of our method, we evaluate its performance using a comprehensive dataset spanning one year.
arXiv Detail & Related papers (2023-07-20T04:46:34Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.