論文の概要: Improving LLM Group Fairness on Tabular Data via In-Context Learning
- arxiv url: http://arxiv.org/abs/2412.04642v1
- Date: Thu, 05 Dec 2024 22:23:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:21.538205
- Title: Improving LLM Group Fairness on Tabular Data via In-Context Learning
- Title(参考訳): 文脈学習による語彙データにおけるLLMグループフェアネスの改善
- Authors: Valeriia Cherepanova, Chia-Jung Lee, Nil-Jana Akpinar, Riccardo Fogliato, Martin Andres Bertran, Michael Kearns, James Zou,
- Abstract要約: 大規模言語モデル(LLM)は、グループフェアネスを満たす予測、すなわち、グループ間で平等な結果を生成するのに失敗する。
本研究では,グループフェアネスを改善するための4つの経験的アプローチについて検討する。
本研究では,これらの手法が全体の性能を高く保ちながら,人口密度の向上に有効であることを示す。
- 参考スコア(独自算出の注目度): 23.53624663038328
- License:
- Abstract: Large language models (LLMs) have been shown to be effective on tabular prediction tasks in the low-data regime, leveraging their internal knowledge and ability to learn from instructions and examples. However, LLMs can fail to generate predictions that satisfy group fairness, that is, produce equitable outcomes across groups. Critically, conventional debiasing approaches for natural language tasks do not directly translate to mitigating group unfairness in tabular settings. In this work, we systematically investigate four empirical approaches to improve group fairness of LLM predictions on tabular datasets, including fair prompt optimization, soft prompt tuning, strategic selection of few-shot examples, and self-refining predictions via chain-of-thought reasoning. Through experiments on four tabular datasets using both open-source and proprietary LLMs, we show the effectiveness of these methods in enhancing demographic parity while maintaining high overall performance. Our analysis provides actionable insights for practitioners in selecting the most suitable approach based on their specific requirements and constraints.
- Abstract(参考訳): 大規模言語モデル(LLM)は、内部知識とインストラクションや例から学ぶ能力を活用して、低データ体制における表形式での予測タスクに有効であることが示されている。
しかし、LSMは群フェアネスを満たす予測、すなわち群全体の等値な結果を生成するのに失敗する。
批判的に、自然言語タスクに対する従来の嫌悪的アプローチは、表の設定におけるグループ不公平を緩和する直接の翻訳にはならない。
本研究では,表付きデータセット上でのLLM予測の群フェアネス向上のための4つの実験的アプローチを体系的に検討し,公正なプロンプト最適化,ソフトプロンプトチューニング,少数ショット例の戦略的選択,チェーン・オブ・シント推論による自己修正予測について検討した。
オープンソースのLLMとプロプライエタリなLLMの両方を用いた4つの表付きデータセットの実験を通じて、これらの手法が全体の性能を維持しつつ、人口密度を向上する効果を示す。
我々の分析は、特定の要件と制約に基づいて最も適切なアプローチを選択する実践者に対して実行可能な洞察を提供する。
関連論文リスト
- Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
大規模言語モデル(LLM)は、学習前のデータから社会的偏見と差別を継承することができる。
我々は、予測結果と敏感な変数との相関を低減し、潜在概念学習における公平性の促進を支援するデータ強化戦略を設計する。
論文 参考訳(メタデータ) (2024-11-04T23:10:05Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - Causal-Guided Active Learning for Debiasing Large Language Models [40.853803921563596]
現在の生成型大規模言語モデル(LLM)は、それでもデータセットバイアスを捕捉し、生成に利用することができる。
従来の知識に基づくデバイアス法や微調整に基づくデバイアス法は、現在のLCMには適さない可能性がある。
LLM自体を利用して情報バイアスされたサンプルを自動かつ自律的に識別し,バイアスパターンを誘導する,カジュアル誘導型アクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T09:46:15Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
我々は、大規模言語モデル(LLM)の特定の限界を特定するために、時間的データセットの包括的な分析を行う。
調査の結果,時間的時間的質問応答に特化したデータセットであるTempTabQAが強化された。
我々は,この領域におけるLLM機能を強化するために,新しいアプローチC.L.E.A.R.を導入する。
論文 参考訳(メタデータ) (2024-07-22T20:13:10Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science [17.910306140400046]
この研究は、これらの予測タスクにLarge Language Models (LLM)を適用する試みである。
本研究の目的は,Llama-2 の大規模学習を行う上で,注釈付きテーブルの包括的コーパスをコンパイルすることで,このギャップを緩和することにある。
論文 参考訳(メタデータ) (2024-03-29T14:41:21Z) - Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing
Framework [20.753141804841]
大規模言語モデル(LLM)はバイアスや差別的な応答を容易に生成できる。
本稿では,人口統計情報とLCMのアウトプットの関連性に着目し,社会的偏見に着目した。
論文 参考訳(メタデータ) (2024-03-13T17:46:28Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。