REL: Working out is all you need
- URL: http://arxiv.org/abs/2412.04645v1
- Date: Thu, 05 Dec 2024 22:32:01 GMT
- Title: REL: Working out is all you need
- Authors: Toby Simonds, Jey Han Lau, Chaithanya Bandi,
- Abstract summary: We observe that OpenAI's O1 model approaches problem-solving in a distinctly human-like manner.
These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models.
- Score: 20.65423513616306
- License:
- Abstract: Recent developments, particularly OpenAI's O1 model, have demonstrated the remarkable potential of Large Language Models (LLMs) for complex reasoning tasks. Through analysis of O1's outputs and provided sample Chain-of-Thought (CoT) demonstrations, we observe that it approaches problem-solving in a distinctly human-like manner, systematically brainstorming ideas, testing hypotheses, verifying results, and planning comprehensive solutions. These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models. In this paper, we hypothesize that this performance gap stems from the limited availability of high-quality reasoning process data in current training sets. We demonstrate that by constructing a specialized dataset focused on explicit problem-solving workflows ("worked solutions"), we can elicit substantially improved planning capabilities from existing models. Additionally, we propose the Reasoning Enhancement Loop (REL), a method for generating synthetic worked solutions.
Related papers
- PEA: Enhancing LLM Performance on Computational-Reasoning Tasks [21.13926189404758]
This study introduces a formal approach to describe and solve a class of important reasoning tasks termed computational reasoning problems.
The framework decomposes these problems into predicate and enumeration components, using LLMs to synthesize programs based on specified predicates, enumeration, and aggregation rules.
Empirical evaluation reveals that PEA substantially enhances the performance of underlying models on benchmark computational problems, yielding an average accuracy improvement of approximately $50%$, coupled with increased efficiency.
arXiv Detail & Related papers (2025-02-16T00:27:05Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Learning to Reason With Relational Abstractions [65.89553417442049]
We study how to build stronger reasoning capability in language models using the idea of relational abstractions.
We find that models that are supplied with such sequences as prompts can solve tasks with a significantly higher accuracy.
arXiv Detail & Related papers (2022-10-06T00:27:50Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis.
We show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies.
arXiv Detail & Related papers (2022-05-10T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.