論文の概要: ProPLIKS: Probablistic 3D human body pose estimation
- arxiv url: http://arxiv.org/abs/2412.04665v1
- Date: Thu, 05 Dec 2024 23:21:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:56:20.730609
- Title: ProPLIKS: Probablistic 3D human body pose estimation
- Title(参考訳): ProPLIKS: 確率的3次元人体ポーズ推定
- Authors: Karthik Shetty, Annette Birkhold, Bernhard Egger, Srikrishna Jaganathan, Norbert Strobel, Markus Kowarschik, Andreas Maier,
- Abstract要約: 本稿では,確率論的モデルを用いた3次元人間のポーズ推定手法を提案する。
具体的には,SO(3)回転群に配向した流れを正規化し,M"オビウス変換に基づく結合機構を組み込む。
また,これらの入力を様々なポーズにマッピングする作業として,2次元画素配列の入力から3次元人物を再構成する課題を再解釈する。
- 参考スコア(独自算出の注目度): 7.397323069796547
- License:
- Abstract: We present a novel approach for 3D human pose estimation by employing probabilistic modeling. This approach leverages the advantages of normalizing flows in non-Euclidean geometries to address uncertain poses. Specifically, our method employs normalizing flow tailored to the SO(3) rotational group, incorporating a coupling mechanism based on the M\"obius transformation. This enables the framework to accurately represent any distribution on SO(3), effectively addressing issues related to discontinuities. Additionally, we reinterpret the challenge of reconstructing 3D human figures from 2D pixel-aligned inputs as the task of mapping these inputs to a range of probable poses. This perspective acknowledges the intrinsic ambiguity of the task and facilitates a straightforward integration method for multi-view scenarios. The combination of these strategies showcases the effectiveness of probabilistic models in complex scenarios for human pose estimation techniques. Our approach notably surpasses existing methods in the field of pose estimation. We also validate our methodology on human pose estimation from RGB images as well as medical X-Ray datasets.
- Abstract(参考訳): 本稿では,確率論的モデルを用いた3次元人間のポーズ推定手法を提案する。
このアプローチは、不確実なポーズに対処するために、非ユークリッド幾何学におけるフローの正規化の利点を利用する。
具体的には,SO(3) 回転群に配向した流れを正規化し,M\\\obius 変換に基づく結合機構を組み込む。
これにより、フレームワークはSO(3)上の任意の分布を正確に表現することができ、不連続性に関連する問題に効果的に対処できる。
さらに,2次元画素配列の入力から3次元人物を再構成する課題を,これらの入力を様々なポーズにマッピングする作業として再解釈する。
この視点は、タスクの内在的な曖昧さを認識し、マルチビューシナリオに対する直接的な統合方法を促進する。
これらの戦略の組み合わせは、人間のポーズ推定手法のための複雑なシナリオにおける確率モデルの有効性を示す。
提案手法はポーズ推定の分野で既存の手法をはるかに上回っている。
また,RGB画像と医療用X線データから人のポーズ推定を行う手法についても検証した。
関連論文リスト
- CondiMen: Conditional Multi-Person Mesh Recovery [0.0]
本研究ではコンディメン(CondiMen)を提案する。コンディメン(CondiMen)は、カメラへのポーズ、体形、内在性、距離に関する共同パラメトリック分布を出力する手法である。
私たちのモデルは、最先端技術と同等以上のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-12-17T16:22:56Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D人間のポーズ予測、すなわち、過去の観察されたポーズのシーケンスが与えられた後の人間の3Dポーズのシーケンスを予測することは、困難な時間課題である。
本稿では,不完全な要素(予測や観測に関係しない)をノイズとして扱える統一的な定式化法を提案し,それらを認知し,妥当なポーズを予測する条件拡散モデルを提案する。
本研究は,4つの標準データセットについて検討し,現状よりも大幅に改善された。
論文 参考訳(メタデータ) (2022-10-11T17:59:54Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - Implicit-PDF: Non-Parametric Representation of Probability Distributions
on the Rotation Manifold [47.31074799708132]
我々はSO(3)上の任意の非パラメトリック分布を推定する手法を提案する。
私たちのキーとなるアイデアは、入力画像と候補ポーズの確率を推定するニューラルネットワークで、分布を暗黙的に表現することです。
我々はPascal3D+とModelNet10-SO(3)ベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:57:23Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
単眼・部分閉塞視からヒトの高密度3次元再構成を実現することの問題点を考察する。
身体の形状やポーズをパラメータ化することで、あいまいさをより効果的にモデル化できることを示唆する。
提案手法は, 3次元人間の標準ベンチマークにおいて, あいまいなポーズ回復において, 代替手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-02T13:55:31Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
マルチパーソナライズされた3次元ポーズ推定手法における特徴マッチングと深さ推定のコアは、エピポーラ制約である。
スパサーの群衆シーンにおけるこの定式化の良好なパフォーマンスにもかかわらず、その効果はより密集した群衆の状況下でしばしば挑戦される。
本稿では,マルチパーソン3次元ポーズ推定式から脱却し,群衆ポーズ推定として再編成する。
論文 参考訳(メタデータ) (2020-07-21T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。