論文の概要: LAA-Net: A Physical-prior-knowledge Based Network for Robust Nighttime Depth Estimation
- arxiv url: http://arxiv.org/abs/2412.04666v1
- Date: Thu, 05 Dec 2024 23:33:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:56:20.274325
- Title: LAA-Net: A Physical-prior-knowledge Based Network for Robust Nighttime Depth Estimation
- Title(参考訳): LAA-Net:ロバストな夜間深度推定のための物理知識に基づくネットワーク
- Authors: Kebin Peng, Haotang Li, Zhenyu Qi, Huashan Chen, Zi Wang, Wei Zhang, Sen He,
- Abstract要約: 既存の教師付き単眼深度推定モデルでは、GANを用いて夜間画像を昼時間版に転送する。
これは、現実の昼の照明の複雑さのために矛盾をもたらす可能性がある。
夜間の光波長と光減衰について, 物理的事前知識を活用する。
当社のモデルであるLAA-Netは、レイリー散乱理論の物理的洞察を強固に夜間深度推定に取り入れている。
- 参考スコア(独自算出の注目度): 9.54220166385061
- License:
- Abstract: Existing self-supervised monocular depth estimation (MDE) models attempt to improve nighttime performance by using GANs to transfer nighttime images into their daytime versions. However, this can introduce inconsistencies due to the complexities of real-world daytime lighting variations, which may finally lead to inaccurate estimation results. To address this issue, we leverage physical-prior-knowledge about light wavelength and light attenuation during nighttime. Specifically, our model, Light-Attenuation-Aware Network (LAA-Net), incorporates physical insights from Rayleigh scattering theory for robust nighttime depth estimation: LAA-Net is trained based on red channel values because red light preserves more information under nighttime scenarios due to its longer wavelength. Additionally, based on Beer-Lambert law, we introduce Red Channel Attenuation (RCA) loss to guide LAA-Net's training. Experiments on the RobotCar-Night, nuScenes-Night, RobotCar-Day, and KITTI datasets demonstrate that our model outperforms SOTA models.
- Abstract(参考訳): 既存の自己教師付き単眼深度推定(MDE)モデルは、GANを用いて夜間画像を昼間版に転送することで夜間性能を向上させる。
しかし、これは現実の昼間の照明の複雑さによって不整合が生じ、最終的に不正確な推定結果につながる可能性がある。
この問題に対処するために、夜間の光波長と光減衰に関する物理的事前知識を利用する。
具体的には、我々のモデルであるLAA-Net(Light-Attenuation-Aware Network)は、レイリー散乱理論の物理的洞察を強固に夜間深度推定に取り入れている。
さらに、Beer-Lambert法に基づき、LAA-Netのトレーニングをガイドするために、Red Channel Attenuation (RCA)損失を導入する。
RobotCar-Night、nuScenes-Night、RobotCar-Day、KITTIデータセットの実験では、私たちのモデルがSOTAモデルより優れていることが示されています。
関連論文リスト
- LED: Light Enhanced Depth Estimation at Night [10.941842055797125]
低照度環境における深度推定を大幅に改善する新しいコスト効率のアプローチであるLED(Light Enhanced Depth)を導入する。
LEDは、現代の車両で利用できる高解像度ヘッドライトによって投影されるパターンを利用する。
49,990の注釈付き画像からなるNighttime Synthetic Driveデータセットをリリースする。
論文 参考訳(メタデータ) (2024-09-12T13:23:24Z) - RHRSegNet: Relighting High-Resolution Night-Time Semantic Segmentation [0.0]
夜間セマンティックセグメンテーションはコンピュータビジョンにおいて重要な課題であり、低照度条件下でのオブジェクトの正確な分類とセグメンテーションに焦点を当てている。
セマンティックセグメンテーションのための高分解能ネットワーク上でのリライトモデルを実装したRHRSegNetを提案する。
提案モデルでは、低照度画像や夜間画像においてHRnetセグメンテーション性能を5%向上させる。
論文 参考訳(メタデータ) (2024-07-08T15:07:09Z) - Self-Supervised Monocular Depth Estimation in the Dark: Towards Data Distribution Compensation [24.382795861986803]
光度一貫性の仮定は、複雑な照明条件下で撮影されたビデオには通常違反するため、自己超越のために夜間画像を使用することは信頼できない。
本研究では,トレーニング中に夜間画像を使用しない夜間単眼深度推定手法を提案する。
論文 参考訳(メタデータ) (2024-04-22T03:39:03Z) - Disentangled Contrastive Image Translation for Nighttime Surveillance [87.03178320662592]
夜間監視は、照明の悪さと厳しい人間のアノテーションによる劣化に悩まされる。
既存の手法では、暗黒の物体を知覚するためにマルチスペクトル画像が使われており、解像度の低さと色の不在に悩まされている。
夜間監視の究極の解決策は、夜から昼までの翻訳(Night2Day)である、と私たちは主張する。
本論文は、夜間監視研究を支援する6つのシーンを含む、NightSuRと呼ばれる新しい監視データセットに貢献する。
論文 参考訳(メタデータ) (2023-07-11T06:40:27Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
LiDARポイントクラウドからの3Dオブジェクト検出の主な課題は、ネットワークの信頼性に影響を与えることなく、リアルタイムのパフォーマンスを実現することである。
本稿では,高速な動的ボキセラライザを実装することにより,ネットワークの推論速度と精度を同時に向上するソリューションを提案する。
さらに,予測対象を分類し,偽検出対象をフィルタリングする軽量検出サブヘッドモデルを提案する。
論文 参考訳(メタデータ) (2023-01-10T16:22:04Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
既存の測光損失を昼夜両方の画像に有効にするための3つの手法の組み合わせについて述べる。
まず、連続するフレーム間で起こる光の変化を補うために、ピクセルごとの神経強度変換を導入する。
第2に,推定エゴモーションと深度によって引き起こされる再投影対応を補正するために,画素ごとの残留フローマップを推定する。
論文 参考訳(メタデータ) (2022-06-28T09:29:55Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Let There be Light: Improved Traffic Surveillance via Detail Preserving
Night-to-Day Transfer [19.33490492872067]
画像翻訳手法を用いて,物体検出時の精度低下を悪条件に緩和する枠組みを提案する。
本稿では,GAN(Generative Adversarial Networks)による詳細な汚職を緩和するために,Kernel Prediction Network (KPN) を用いた夜間・昼間の画像翻訳の改良手法を提案する。
論文 参考訳(メタデータ) (2021-05-11T13:18:50Z) - Nighttime Dehazing with a Synthetic Benchmark [147.21955799938115]
昼間の鮮明な画像から夜間のハズイ画像をシミュレートする3Rという新しい合成法を提案する。
実空間の光色を以前の経験的分布からサンプリングすることにより,現実的な夜間ハズイ画像を生成する。
実験結果は、画像の品質と実行時間の両方の観点から、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T02:16:46Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
我々は、深度マップを用いて、RGBと深度の間の早期融合と中核融合を誘導する単一ストリームネットワークを設計する。
このモデルは、現在の最も軽量なモデルよりも55.5%軽く、32 FPSのリアルタイム速度で384倍の384ドルの画像を処理している。
論文 参考訳(メタデータ) (2020-07-14T04:40:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。