Two stages domain invariant representation learners solve the large co-variate shift in unsupervised domain adaptation with two dimensional data domains
- URL: http://arxiv.org/abs/2412.04682v2
- Date: Mon, 17 Feb 2025 02:12:40 GMT
- Title: Two stages domain invariant representation learners solve the large co-variate shift in unsupervised domain adaptation with two dimensional data domains
- Authors: Hisashi Oshima, Tsuyoshi Ishizone, Tomoyuki Higuchi,
- Abstract summary: Recent developments in the unsupervised domain adaptation (UDA) enable the unsupervised machine learning (ML) prediction for target data.
This paper presents a method to bridge the gap between source and target with semantic intermediate data.
We also derive a theorem for measuring the gap between trained models and unsupervised target labelling rules.
- Score: 0.0
- License:
- Abstract: Recent developments in the unsupervised domain adaptation (UDA) enable the unsupervised machine learning (ML) prediction for target data, thus this will accelerate real world applications with ML models such as image recognition tasks in self-driving. Researchers have reported the UDA techniques are not working well under large co-variate shift problems where e.g. supervised source data consists of handwritten digits data in monotone color and unsupervised target data colored digits data from the street view. Thus there is a need for a method to resolve co-variate shift and transfer source labelling rules under this dynamics. We perform two stages domain invariant representation learning to bridge the gap between source and target with semantic intermediate data (unsupervised). The proposed method can learn domain invariant features simultaneously between source and intermediate also intermediate and target. Finally this achieves good domain invariant representation between source and target plus task discriminability owing to source labels. This induction for the gradient descent search greatly eases learning convergence in terms of classification performance for target data even when large co-variate shift. We also derive a theorem for measuring the gap between trained models and unsupervised target labelling rules, which is necessary for the free parameters optimization. Finally we demonstrate that proposing method is superiority to previous UDA methods using 4 representative ML classification datasets including 38 UDA tasks. Our experiment will be a basis for challenging UDA problems with large co-variate shift.
Related papers
- SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - IT-RUDA: Information Theory Assisted Robust Unsupervised Domain
Adaptation [7.225445443960775]
Distribution shift between train (source) and test (target) datasets is a common problem encountered in machine learning applications.
UDA technique carries out knowledge transfer from a label-rich source domain to an unlabeled target domain.
Outliers that exist in either source or target datasets can introduce additional challenges when using UDA in practice.
arXiv Detail & Related papers (2022-10-24T04:33:52Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model ADaptation (UMAD) framework handles both UDA scenarios without access to source data.
We develop an informative consistency score to help distinguish unknown samples from known samples.
Experiments on open-set and open-partial-set UDA scenarios demonstrate that UMAD exhibits comparable, if not superior, performance to state-of-the-art data-dependent methods.
arXiv Detail & Related papers (2021-12-16T01:22:59Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
We propose a novel two-step semi-supervised dual-domain adaptation (SSDDA) approach to address both cross- and intra-domain gaps in semantic segmentation.
We demonstrate that the proposed approach outperforms state-of-the-art methods on two common synthetic-to-real semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-20T16:13:00Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
We propose a novel task named Semi-supervised Source Hypothesis Transfer (SSHT), which performs domain adaptation based on source trained model, to generalize well in target domain with a few supervisions.
We propose Consistency and Diversity Learning (CDL), a simple but effective framework for SSHT by facilitating prediction consistency between two randomly augmented unlabeled data.
Experimental results show that our method outperforms existing SSDA methods and unsupervised model adaptation methods on DomainNet, Office-Home and Office-31 datasets.
arXiv Detail & Related papers (2021-07-07T04:14:24Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Unsupervised Domain Adaptation in the Dissimilarity Space for Person
Re-identification [11.045405206338486]
We propose a novel Dissimilarity-based Maximum Mean Discrepancy (D-MMD) loss for aligning pair-wise distances.
Empirical results with three challenging benchmark datasets show that the proposed D-MMD loss decreases as source and domain distributions become more similar.
arXiv Detail & Related papers (2020-07-27T22:10:46Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.