On Interpreting the Effectiveness of Unsupervised Software Traceability with Information Theory
- URL: http://arxiv.org/abs/2412.04704v1
- Date: Fri, 06 Dec 2024 01:29:29 GMT
- Title: On Interpreting the Effectiveness of Unsupervised Software Traceability with Information Theory
- Authors: David N. Palacio, Daniel Rodriguez-Cardenas, Denys Poshyvanyk, Kevin Moran,
- Abstract summary: Unsupervised traceability techniques often assume traceability patterns are present within textual data.<n>We introduce self-information, cross-entropy, and mutual information (MI) as metrics to measure the informativeness and reliability of traceability links.<n>We show that an average MI of 4.81 bits, loss of 1.75, and noise of 0.28 bits signify that there are information-theoretic limits on the effectiveness of unsupervised traceability techniques.
- Score: 12.390314973658466
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traceability is a cornerstone of modern software development, ensuring system reliability and facilitating software maintenance. While unsupervised techniques leveraging Information Retrieval (IR) and Machine Learning (ML) methods have been widely used for predicting trace links, their effectiveness remains underexplored. In particular, these techniques often assume traceability patterns are present within textual data - a premise that may not hold universally. Moreover, standard evaluation metrics such as precision, recall, accuracy, or F1 measure can misrepresent the model performance when underlying data distributions are not properly analyzed. Given that automated traceability techniques tend to struggle to establish links, we need further insight into the information limits related to traceability artifacts. In this paper, we propose an approach, TraceXplainer, for using information theory metrics to evaluate and better understand the performance (limits) of unsupervised traceability techniques. Specifically, we introduce self-information, cross-entropy, and mutual information (MI) as metrics to measure the informativeness and reliability of traceability links. Through a comprehensive replication and analysis of well-studied datasets and techniques, we investigate the effectiveness of unsupervised techniques that predict traceability links using IR/ML. This application of TraceXplainer illustrates an imbalance in typical traceability datasets where the source code has on average 1.48 more information bits (i.e., entropy) than the linked documentation. Additionally, we demonstrate that an average MI of 4.81 bits, loss of 1.75, and noise of 0.28 bits signify that there are information-theoretic limits on the effectiveness of unsupervised traceability techniques. We hope these findings spur additional research on understanding the limits and progress of traceability research.
Related papers
- SILENT: A New Lens on Statistics in Software Timing Side Channels [10.872605368135343]
Recent attacks have challenged our understanding of what it means for code to execute in constant time on modern CPUs.
We introduce a new algorithm for the analysis of timing measurements with strong, formal statistical guarantees.
We demonstrate the necessity, effectiveness, and benefits of our approach on both synthetic benchmarks and real-world applications.
arXiv Detail & Related papers (2025-04-28T14:22:23Z) - Large Language Models as Realistic Microservice Trace Generators [54.85489678342595]
Workload traces are essential to understand complex computer systems' behavior and manage processing and memory resources.
This paper proposes a first-of-a-kind approach that relies on training a large language model to generate synthetic workload traces.
Our model adapts to downstream trace-related tasks, such as predicting key trace features and infilling missing data.
arXiv Detail & Related papers (2024-12-16T12:48:04Z) - Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing [1.8877926393541125]
We show that we can abduce movement trajectories efficiently through an informed (i.e., A*) search.
We also report on our own experiments showing that we not only provide exact results but also scale to very large scenarios.
arXiv Detail & Related papers (2024-07-08T23:11:47Z) - Information Leakage Detection through Approximate Bayes-optimal Prediction [22.04308347355652]
Information leakage (IL) involves unintentionally exposing sensitive information to unauthorized parties.
Conventional statistical approaches rely on estimating mutual information between observable and secret information for detecting ILs.
We establish a theoretical framework using statistical learning theory and information theory to quantify and detect IL accurately.
arXiv Detail & Related papers (2024-01-25T16:15:27Z) - TRIAD: Automated Traceability Recovery based on Biterm-enhanced
Deduction of Transitive Links among Artifacts [53.92293118080274]
Traceability allows stakeholders to extract and comprehend the trace links among software artifacts introduced across the software life cycle.
Most rely on textual similarities among software artifacts, such as those based on Information Retrieval (IR)
arXiv Detail & Related papers (2023-12-28T06:44:24Z) - Weak Supervision Performance Evaluation via Partial Identification [46.73061437177238]
Programmatic Weak Supervision (PWS) enables supervised model training without direct access to ground truth labels.
We present a novel method to address this challenge by framing model evaluation as a partial identification problem.
Our approach derives reliable bounds on key metrics without requiring labeled data, overcoming core limitations in current weak supervision evaluation techniques.
arXiv Detail & Related papers (2023-12-07T07:15:11Z) - Identifying Performance Issues in Cloud Service Systems Based on Relational-Temporal Features [11.83269525626691]
Cloud systems are susceptible to performance issues, which may cause service-level agreement violations and financial losses.
We propose a learning-based approach that leverages both the relational and temporal features of metrics to identify performance issues.
arXiv Detail & Related papers (2023-07-20T13:41:26Z) - Data AUDIT: Identifying Attribute Utility- and Detectability-Induced
Bias in Task Models [8.420252576694583]
We present a first technique for the rigorous, quantitative screening of medical image datasets.
Our method decomposes the risks associated with dataset attributes in terms of their detectability and utility.
Using our method, we show our screening method reliably identifies nearly imperceptible bias-inducing artifacts.
arXiv Detail & Related papers (2023-04-06T16:50:15Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Unsupervised Abnormal Traffic Detection through Topological Flow
Analysis [1.933681537640272]
topological connectivity component of a malicious flow is less exploited.
We present a simple method that facilitate the use of connectivity graph features in unsupervised anomaly detection algorithms.
arXiv Detail & Related papers (2022-05-14T18:52:49Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.