Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing
- URL: http://arxiv.org/abs/2407.06447v1
- Date: Mon, 8 Jul 2024 23:11:47 GMT
- Title: Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing
- Authors: Divyagna Bavikadi, Dyuman Aditya, Devendra Parkar, Paulo Shakarian, Graham Mueller, Chad Parvis, Gerardo I. Simari,
- Abstract summary: We show that we can abduce movement trajectories efficiently through an informed (i.e., A*) search.
We also report on our own experiments showing that we not only provide exact results but also scale to very large scenarios.
- Score: 1.8877926393541125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to generate artificial human movement patterns while meeting location and time constraints is an important problem in the security community, particularly as it enables the study of the analog problem of detecting such patterns while maintaining privacy. We frame this problem as an instance of abduction guided by a novel parsimony function represented as an aggregate truth value over an annotated logic program. This approach has the added benefit of affording explainability to an analyst user. By showing that any subset of such a program can provide a lower bound on this parsimony requirement, we are able to abduce movement trajectories efficiently through an informed (i.e., A*) search. We describe how our implementation was enhanced with the application of multiple techniques in order to be scaled and integrated with a cloud-based software stack that included bottom-up rule learning, geolocated knowledge graph retrieval/management, and interfaces with government systems for independently conducted government-run tests for which we provide results. We also report on our own experiments showing that we not only provide exact results but also scale to very large scenarios and provide realistic agent trajectories that can go undetected by machine learning anomaly detectors.
Related papers
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Self-supervised Learning for Anomaly Detection in Computational
Workflows [10.39119516144685]
We introduce an autoencoder-driven self-supervised learning(SSL) approach that learns a summary statistic from unlabeled workflow data.
In this approach, we combine generative and contrastive learning objectives to detect outliers in the summary statistics.
We demonstrate that by estimating the distribution of normal behavior in the latent space, we can outperform state-of-the-art anomaly detection methods on our benchmark datasets.
arXiv Detail & Related papers (2023-10-02T14:31:56Z) - Provably Sample-Efficient RL with Side Information about Latent Dynamics [12.461789905893026]
We study reinforcement learning in settings where observations are high-dimensional, but where an RL agent has access to abstract knowledge about the structure of the state space.
We present an algorithm, called TASID, that learns a robust policy in the target domain, with sample complexity that is in the horizon.
arXiv Detail & Related papers (2022-05-27T21:07:03Z) - AI based Log Analyser: A Practical Approach [0.0]
The analysis of logs is a vital activity undertaken for fault or cyber forensics incident detection, investigation and technical analysis for system and cyber resilience.
The potential application of AI algorithms for Log analysis could augment such complex and laborious tasks.
This research seeks to address these challenges with the use of Transformer construct to train a new model with only normal log entries.
arXiv Detail & Related papers (2022-03-18T07:57:48Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-08-23T02:15:21Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Controlled time series generation for automotive software-in-the-loop
testing using GANs [0.5352699766206808]
Testing automotive mechatronic systems partly uses the software-in-the-loop approach, where systematically covering inputs of the system-under-test remains a major challenge.
One approach is to craft input sequences which eases control and feedback of the test process but falls short of exposing the system to realistic scenarios.
The other is to replay sequences recorded from field operations which accounts for reality but requires collecting a well-labeled dataset of sufficient capacity for widespread use, which is expensive.
This work applies the well-known unsupervised learning framework of Generative Adrial Networks (GAN) to learn an unlabeled dataset of recorded in-vehicle
arXiv Detail & Related papers (2020-02-16T16:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.