Learning to Translate Noise for Robust Image Denoising
- URL: http://arxiv.org/abs/2412.04727v1
- Date: Fri, 06 Dec 2024 02:35:44 GMT
- Title: Learning to Translate Noise for Robust Image Denoising
- Authors: Inju Ha, Donghun Ryou, Seonguk Seo, Bohyung Han,
- Abstract summary: Deep learning techniques often struggle with poor generalization performance to out-of-distribution real-world noise.
We propose a novel noise translation framework that performs denoising on an image with translated noise rather than directly denoising an original noisy image.
- Score: 38.61470097987608
- License:
- Abstract: Deep learning-based image denoising techniques often struggle with poor generalization performance to out-of-distribution real-world noise. To tackle this challenge, we propose a novel noise translation framework that performs denoising on an image with translated noise rather than directly denoising an original noisy image. Specifically, our approach translates complex, unknown real-world noise into Gaussian noise, which is spatially uncorrelated and independent of image content, through a noise translation network. The translated noisy images are then processed by an image denoising network pretrained to effectively remove Gaussian noise, enabling robust and consistent denoising performance. We also design well-motivated loss functions and architectures for the noise translation network by leveraging the mathematical properties of Gaussian noise. Experimental results demonstrate that the proposed method substantially improves robustness and generalizability, outperforming state-of-the-art methods across diverse benchmarks. Visualized denoising results and the source code are available on our project page.
Related papers
- LAN: Learning to Adapt Noise for Image Denoising [10.90034618138499]
We propose a new denoising algorithm, dubbed Learning-to-Adapt-Noise (LAN), where a learnable noise offset is directly added to a given noisy image to bring a given input noise closer towards the noise distribution a denoising network is trained to handle.
The proposed framework exhibits performance improvement on images with unseen noise, displaying the potential of the proposed research direction.
arXiv Detail & Related papers (2024-12-14T02:46:25Z) - Image Denoising via Style Disentanglement [9.38519460509602]
We propose a novel approach to image denoising that offers both clear denoising mechanism and good performance.
We view noise as a type of image style and remove it by incorporating noise-free styles derived from clean images.
We conduct extensive experiments on synthetic noise removal and real-world image denoising datasets.
arXiv Detail & Related papers (2023-09-26T08:29:33Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
We propose a boosting network to perform denoising and segmentation alternately.
We observe that not only denoising helps combat the drop of segmentation accuracy due to noise, but also pixel-wise semantic information boosts the capability of denoising.
Experimental results show that the denoised image quality is improved substantially and the segmentation accuracy is improved to close to that of clean images.
arXiv Detail & Related papers (2021-02-24T06:48:45Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z) - Enhancing and Learning Denoiser without Clean Reference [23.11994688706024]
We propose a novel deep image-denoising method by regarding the noise reduction task as a special case of the noise transference task.
The results on real-world denoising benchmarks demonstrate that our proposed method achieves promising performance on removing realistic noises.
arXiv Detail & Related papers (2020-09-09T13:15:31Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
This paper proposes a gradual denoising strategy that iteratively detects the dominating noise in an image, and removes it using a tailored denoiser.
The method provides an insight on the nature of the encountered noise, and it makes it possible to extend an existing denoiser with new noise nature.
arXiv Detail & Related papers (2020-02-18T11:09:03Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.