論文の概要: Direct Quantized Training of Language Models with Stochastic Rounding
- arxiv url: http://arxiv.org/abs/2412.04787v2
- Date: Wed, 02 Jul 2025 05:35:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:56.544176
- Title: Direct Quantized Training of Language Models with Stochastic Rounding
- Title(参考訳): 確率的ラウンドリングを用いた言語モデルの直接量子化学習
- Authors: Kaiyan Zhao, Tsuguchika Tabaru, Kenichi Kobayashi, Takumi Honda, Masafumi Yamazaki, Yoshimasa Tsuruoka,
- Abstract要約: 様々な大きさのLLaMA構造化モデルの実験結果から,3次値に制約された場合でも,低精度の重み付きトレーニングが実現可能であることが示唆された。
我々のモデルは、FP32から低メモリ環境に移行する際の性能劣化を最小限に抑えながら、精度のスケーリングとメモリ削減に頑健なままです。
- 参考スコア(独自算出の注目度): 12.028887152979046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
- Abstract(参考訳): BitNetのような最近の量子化大言語モデル(LLM)は、バイナリや3次重みによるデプロイメント中のメモリ使用量の大幅な削減の道を開いたが、これらのモデルのトレーニングは依然としてかなりのメモリフットプリントを必要としている。
これは部分的には、ストレートスルー推定に必要な高精度(すなわち、非定量化)の重みが、トレーニングプロセス全体を通して維持されなければならないためである。
これを解決するために,バックプロパゲーション中のストレートスルー推定に頼ることなく,量子化された低精度ウェイトを直接更新し,トレーニング時のメモリ使用量を削減することを目的とした。
具体的には、トレーニングを通しての低ビット重みの使用による情報損失を最小限に抑えるために、確率的なラウンドリング手法を用いる。
2)ビット幅を8ビットに拡張することで,BitNet b1.58と同等の性能が得られること,(3)FP32から低メモリ環境(BF16/FP8)への移行時の性能低下を最小限に抑えること,(4)3次重みを用いた推論もサポートし,展開時の柔軟性を示すこと,などが示されている。
関連論文リスト
- Continual Quantization-Aware Pre-Training: When to transition from 16-bit to 1.58-bit pre-training for BitNet language models? [5.67099529296254]
大規模言語モデル(LLM)は、トレーニングと推論に膨大なリソースを必要とする。
近年の研究では、重量パラメータ1本あたり1.58ビットのLSMをスクラッチからトレーニングすることは、モデルの精度を維持することができることが示唆されている。
論文 参考訳(メタデータ) (2025-02-17T15:21:11Z) - Memory Is Not the Bottleneck: Cost-Efficient Continual Learning via Weight Space Consolidation [55.77835198580209]
連続学習(CL)は、メモリが主要なボトルネックであると仮定して、メモリ使用量の最小化を伝統的に強調してきた。
本稿では, CLを十分なメモリでより現実的な環境下で再検討し, システムが過去のデータの代表的部分を保持できることを示す。
この体制下では、忘れることを減らすことによって安定性が向上するが、モデルが以前のタスクに偏り、新しいタスクに適応するのに苦労すると、可塑性は低下する。
論文 参考訳(メタデータ) (2025-02-11T05:40:52Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
本稿では,大規模言語モデルに対する最適スパース事前学習構成の体系的検討を行う。
総トレーニング計算の25%でプルーニングを開始し、75%で終了すると、ほぼ最適の最終評価損失が得られることがわかった。
本稿では,事前学習よりも平均パラメータ数を使用するように,チンチラスケーリング法を修正した新しいスケーリング法を提案する。
論文 参考訳(メタデータ) (2025-01-21T20:23:22Z) - Scaling Laws for Precision [73.24325358259753]
トレーニングと推論の両方に"精度対応"のスケーリング法則を考案する。
推論では,学習後の量子化によって生じる劣化が,モデルがより多くのデータに基づいて訓練されるにつれて増加することが分かる。
トレーニングのために、我々のスケーリング法則は、異なるパーツの異なるモデルの損失を、異なる精度で予測することができる。
論文 参考訳(メタデータ) (2024-11-07T00:10:10Z) - LoQT: Low-Rank Adapters for Quantized Pretraining [5.767156832161818]
Low-Rank Adapters for Quantized Training (LoQT) は、量子化モデルの効率的なトレーニング方法である。
我々のアプローチは、事前学習モデルと微調整モデルの両方に適しています。
言語モデリングとダウンストリームタスク適応において,LoQTが最大7Bパラメータを24GBのGPU上で効率的にトレーニングできることを実証する。
論文 参考訳(メタデータ) (2024-05-26T11:29:57Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
大規模なモデルをスクラッチからトレーニングすることは、通常、かなりの量のリソースを必要とする。
bert2BERT や LiGO といった最近の研究は、大規模なモデルを初期化するために、小さな事前訓練されたモデルを再利用している。
本稿では,対象モデルの各重みを事前学習モデルの全重みに線形に相関させる手法を提案する。
論文 参考訳(メタデータ) (2023-10-16T06:16:47Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
本研究は,非構造的重み空間を用いて,事前訓練中にのみ重みのサブセットを訓練する利点を示す。
我々は1.3Bパラメータ GPT-3 XL モデルに最大75%の間隔を誘導できることを示す。
論文 参考訳(メタデータ) (2023-03-18T17:56:01Z) - Quantized Neural Networks for Low-Precision Accumulation with Guaranteed
Overflow Avoidance [68.8204255655161]
本稿では,推定時のアキュムレータの精度を下げる際に,数値オーバーフローを回避する量子化学習アルゴリズムを提案する。
本手法は,浮動小数点点ベースラインに対するモデル精度を維持しつつ,アキュムレータの精度を低減できることを示す。
論文 参考訳(メタデータ) (2023-01-31T02:46:57Z) - Hyperspherical Quantization: Toward Smaller and More Accurate Models [17.154801913113566]
ベクトル量子化は、モデルウェイトを高精度な埋め込みでインデックス化することで、モデルサイズを減らすことを目的としている。
バイナリや他の低精度量子化法は、モデルのサイズを32$times$まで削減できるが、かなりの精度低下を犠牲にすることができる。
より小型で高精度な圧縮モデルを生成するために, 3次量子化のための効率的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-24T04:42:15Z) - SQuAT: Sharpness- and Quantization-Aware Training for BERT [43.049102196902844]
シャープネスと量子化アウェアトレーニング(SQuAT)を提案する。
提案手法は,2,3,4ビット条件下で,最先端の量子化BERTモデルよりも1%向上する。
また, シャープネスの測定実験により, 他の量子化法と比較して, より平坦な最小値が得られることが示唆された。
論文 参考訳(メタデータ) (2022-10-13T16:52:19Z) - Enabling Binary Neural Network Training on the Edge [7.32770338248516]
既存のバイナリニューラルネットワークトレーニング手法では、すべてのレイヤに対して高精度なアクティベーションを同時に保存する必要がある。
本稿では,メモリフットプリントの大幅な削減を図った,低コストなバイナリニューラルネットワークトレーニング戦略を提案する。
また、2ナライズされたResNet-18のin-scratch ImageNetトレーニングも実施し、3.78$times$メモリ削減を実現した。
論文 参考訳(メタデータ) (2021-02-08T15:06:41Z) - Predicting Training Time Without Training [120.92623395389255]
我々は、事前訓練された深層ネットワークが損失関数の所定の値に収束する必要がある最適化ステップの数を予測する問題に取り組む。
我々は、微調整中の深部ネットワークのトレーニングダイナミクスが線形化モデルによってよく近似されているという事実を活用する。
トレーニングをする必要なく、特定の損失にモデルを微調整するのに要する時間を予測できます。
論文 参考訳(メタデータ) (2020-08-28T04:29:54Z) - Improving compute efficacy frontiers with SliceOut [31.864949424541344]
SliceOut - 最終テスト精度に影響を与えることなく、ディープラーニングモデルを高速にトレーニングするためのドロップアウトインスパイアされたスキームだ。
テスト時に、SliceOutをオフにすると、テストの正確性を保持する一連のアーキテクチャに暗黙のアンサンブルが実行される。
これにより、大規模な計算ワークロード全体の処理が高速化され、結果として生じるエネルギー消費とCO2エミッションが大幅に削減される。
論文 参考訳(メタデータ) (2020-07-21T15:59:09Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。