Wavelet Diffusion Neural Operator
- URL: http://arxiv.org/abs/2412.04833v1
- Date: Fri, 06 Dec 2024 07:56:25 GMT
- Title: Wavelet Diffusion Neural Operator
- Authors: Peiyan Hu, Rui Wang, Xiang Zheng, Tao Zhang, Haodong Feng, Ruiqi Feng, Long Wei, Yue Wang, Zhi-Ming Ma, Tailin Wu,
- Abstract summary: We propose Wavelet Neural Diffusion Operator (WDNO), a novel PDE simulation and control framework.
WDNO performs diffusion-based generative modeling in the wavelet domain to handle abrupt changes and long-term dependencies effectively.
To address the issue of poor generalization across different resolutions, we introduce multi-resolution training.
- Score: 17.617919636212445
- License:
- Abstract: Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 33.2% compared to the second-best baseline.
Related papers
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)
We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.
We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics.
Traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions.
This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D blood flow models.
arXiv Detail & Related papers (2024-11-08T15:22:20Z) - Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems [1.5195865840919498]
Reinforcement Learning (RL) has emerged as a promising control paradigm for systems with high-dimensional, nonlinear dynamics.
We propose a data-efficient, interpretable, and scalable framework for PDE control.
arXiv Detail & Related papers (2024-11-06T18:26:19Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction [74.49121940466675]
We introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction.
First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm.
Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions.
arXiv Detail & Related papers (2023-11-23T20:14:50Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.
This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.
We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs.
We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability.
We demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
arXiv Detail & Related papers (2022-06-15T17:31:24Z) - WaveNet-Based Deep Neural Networks for the Characterization of Anomalous
Diffusion (WADNet) [0.0]
Anomalous diffusion is involved in the evolution of physical, chemical, biological, and economic systems.
This challenge aims at objectively assessing and comparing new approaches for single trajectory characterization.
We develop a WaveNet-based deep neural network (WADNet) by combining a modified WaveNet encoder with long short-term memory networks.
arXiv Detail & Related papers (2021-06-14T19:41:15Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
We present a novel hierarchical predictor-corrector scheme which enables neural networks to learn to understand and control complex nonlinear physical systems over long time frames.
We demonstrate that our method successfully develops an understanding of complex physical systems and learns to control them for tasks involving PDEs.
arXiv Detail & Related papers (2020-01-21T11:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.