D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction
- URL: http://arxiv.org/abs/2311.14189v4
- Date: Thu, 5 Sep 2024 05:19:56 GMT
- Title: D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction
- Authors: Bowen Fu, Gu Wang, Chenyangguang Zhang, Yan Di, Ziqin Huang, Zhiying Leng, Fabian Manhardt, Xiangyang Ji, Federico Tombari,
- Abstract summary: We introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction.
First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm.
Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions.
- Score: 74.49121940466675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reconstructing hand-held objects from a single RGB image is a challenging task in computer vision. In contrast to prior works that utilize deterministic modeling paradigms, we employ a point cloud denoising diffusion model to account for the probabilistic nature of this problem. In the core, we introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction (D-SCo), tackling two predominant challenges. First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm, enhancing the stability of diffusion and reverse processes and the precision of feature projection. Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions with a novel unified hand-object semantic embedding, enhancing the reconstruction performance of the hand-occluded region of the object. Experiments on the synthetic ObMan dataset and three real-world datasets HO3D, MOW and DexYCB demonstrate that our approach can surpass all other state-of-the-art methods.
Related papers
- Generalizable Single-view Object Pose Estimation by Two-side Generating and Matching [19.730504197461144]
We present a novel generalizable object pose estimation method to determine the object pose using only one RGB image.
Our method offers generalization to unseen objects without extensive training, operates with a single reference image of the object, and eliminates the need for 3D object models or multiple views of the object.
arXiv Detail & Related papers (2024-11-24T14:31:50Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - Towards Detailed Text-to-Motion Synthesis via Basic-to-Advanced
Hierarchical Diffusion Model [60.27825196999742]
We propose a novel Basic-to-Advanced Hierarchical Diffusion Model, named B2A-HDM, to collaboratively exploit low-dimensional and high-dimensional diffusion models for detailed motion synthesis.
Specifically, the basic diffusion model in low-dimensional latent space provides the intermediate denoising result that is consistent with the textual description.
The advanced diffusion model in high-dimensional latent space focuses on the following detail-enhancing denoising process.
arXiv Detail & Related papers (2023-12-18T06:30:39Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
This paper introduces the first method that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos.
We model hands as articulated objects inducing non-rigid face deformations during an active interaction.
Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system.
arXiv Detail & Related papers (2023-09-28T17:59:51Z) - Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models [8.590026259176806]
We propose a diffusion-model-based framework that overcomes the limitations of requiring reference data or prior knowledge about the degradation process.
Our approach utilizes 2D diffusion models to consistently reconstruct 3D volumes and is well-suited for highly downsampled data.
arXiv Detail & Related papers (2023-08-03T07:57:02Z) - A Probabilistic Attention Model with Occlusion-aware Texture Regression
for 3D Hand Reconstruction from a Single RGB Image [5.725477071353354]
Deep learning approaches have shown promising results in 3D hand reconstruction from a single RGB image.
We propose a novel probabilistic model to achieve the robustness of model-based approaches.
We demonstrate the flexibility of the proposed probabilistic model to be trained in both supervised and weakly-supervised scenarios.
arXiv Detail & Related papers (2023-04-27T16:02:32Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
Diffusion models have emerged as the new state-of-the-art generative model with high quality samples.
We propose to augment the 2D diffusion prior with a model-based prior in the remaining direction at test time, such that one can achieve coherent reconstructions across all dimensions.
Our method can be run in a single commodity GPU, and establishes the new state-of-the-art.
arXiv Detail & Related papers (2022-11-19T10:32:21Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.