Putting the Iterative Training of Decision Trees to the Test on a Real-World Robotic Task
- URL: http://arxiv.org/abs/2412.04974v1
- Date: Fri, 06 Dec 2024 11:48:49 GMT
- Title: Putting the Iterative Training of Decision Trees to the Test on a Real-World Robotic Task
- Authors: Raphael C. Engelhardt, Marcel J. Meinen, Moritz Lange, Laurenz Wiskott, Wolfgang Konen,
- Abstract summary: In previous research, we developed methods to train decision trees (DT) as agents for reinforcement learning tasks.
We apply this algorithm to a real-world implementation of a robotic task for the first time.
Our results demonstrate the applicability of the algorithm to real-world tasks by generating a DT whose performance matches the performance of the DRL agent.
- Score: 0.0
- License:
- Abstract: In previous research, we developed methods to train decision trees (DT) as agents for reinforcement learning tasks, based on deep reinforcement learning (DRL) networks. The samples from which the DTs are built, use the environment's state as features and the corresponding action as label. To solve the nontrivial task of selecting samples, which on one hand reflect the DRL agent's capabilities of choosing the right action but on the other hand also cover enough state space to generalize well, we developed an algorithm to iteratively train DTs. In this short paper, we apply this algorithm to a real-world implementation of a robotic task for the first time. Real-world tasks pose additional challenges compared to simulations, such as noise and delays. The task consists of a physical pendulum attached to a cart, which moves on a linear track. By movements to the left and to the right, the pendulum is to be swung in the upright position and balanced in the unstable equilibrium. Our results demonstrate the applicability of the algorithm to real-world tasks by generating a DT whose performance matches the performance of the DRL agent, while consisting of fewer parameters. This research could be a starting point for distilling DTs from DRL agents to obtain transparent, lightweight models for real-world reinforcement learning tasks.
Related papers
- D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Solving Continual Offline Reinforcement Learning with Decision Transformer [78.59473797783673]
Continuous offline reinforcement learning (CORL) combines continuous and offline reinforcement learning.
Existing methods, employing Actor-Critic structures and experience replay (ER), suffer from distribution shifts, low efficiency, and weak knowledge-sharing.
We introduce multi-head DT (MH-DT) and low-rank adaptation DT (LoRA-DT) to mitigate DT's forgetting problem.
arXiv Detail & Related papers (2024-01-16T16:28:32Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Digital Twin-Assisted Efficient Reinforcement Learning for Edge Task
Scheduling [10.777592783012702]
We propose a Digital Twin (DT)-assisted RL-based task scheduling method in order to improve the performance and convergence of the RL.
Two algorithms are designed to made task scheduling decisions, i.e., DT-assisted asynchronous Q-learning (DTAQL) and DT-assisted exploring Q-learning (DTEQL)
arXiv Detail & Related papers (2022-08-02T23:26:08Z) - Abstract Demonstrations and Adaptive Exploration for Efficient and
Stable Multi-step Sparse Reward Reinforcement Learning [44.968170318777105]
This paper proposes a DRL exploration technique, termed A2, which integrates two components inspired by human experiences: Abstract demonstrations and Adaptive exploration.
A2 starts by decomposing a complex task into subtasks, and then provides the correct orders of subtasks to learn.
We demonstrate that A2 can aid popular DRL algorithms to learn more efficiently and stably in these environments.
arXiv Detail & Related papers (2022-07-19T12:56:41Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
Reinforcement learning (RL) algorithms find applications in inventory control, recommender systems, vehicular traffic management, cloud computing and robotics.
Real-world complications of many tasks arising in these domains makes them difficult to solve with the basic assumptions underlying classical RL algorithms.
This paper provides a survey of RL methods developed for handling dynamically varying environment models.
A representative collection of these algorithms is discussed in detail in this work along with their categorization and their relative merits and demerits.
arXiv Detail & Related papers (2020-05-19T09:42:42Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.