Constructing optimal treatment length strategies to maximize quality-adjusted lifetimes
- URL: http://arxiv.org/abs/2412.05108v1
- Date: Fri, 06 Dec 2024 15:09:17 GMT
- Title: Constructing optimal treatment length strategies to maximize quality-adjusted lifetimes
- Authors: Hao Sun, Ashkan Ertefaie, Luke Duttweiler, Brent A. Johnson,
- Abstract summary: We propose methods for constructing optimal treatment length strategies to maximize quality-adjusted lifetime outcomes.
Existing methods for estimating optimal treatment strategies for survival outcomes cannot be applied to a quality-adjusted lifetime due to induced informative censoring.
We apply our method to obtain the optimal time for endoscopic gastrostomy insertion in patients with amyotrophic lateral sclerosis.
- Score: 5.545853284130158
- License:
- Abstract: Real-world clinical decision making is a complex process that involves balancing the risks and benefits of treatments. Quality-adjusted lifetime is a composite outcome that combines patient quantity and quality of life, making it an attractive outcome in clinical research. We propose methods for constructing optimal treatment length strategies to maximize this outcome. Existing methods for estimating optimal treatment strategies for survival outcomes cannot be applied to a quality-adjusted lifetime due to induced informative censoring. We propose a weighted estimating equation that adjusts for both confounding and informative censoring. We also propose a nonparametric estimator of the mean counterfactual quality-adjusted lifetime survival curve under a given treatment length strategy, where the weights are estimated using an undersmoothed sieve-based estimator. We show that the estimator is asymptotically linear and provide a data-dependent undersmoothing criterion. We apply our method to obtain the optimal time for percutaneous endoscopic gastrostomy insertion in patients with amyotrophic lateral sclerosis.
Related papers
- Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series [4.656302602746229]
This paper introduces a novel method integrating counterfactual estimation techniques and uncertainty quantification.
We validate our method using two simulated datasets, one focused on the cardiovascular system and the other on COVID-19.
Our findings indicate that our method has robust performance across different counterfactual estimation baselines.
arXiv Detail & Related papers (2024-10-11T13:56:25Z) - Learning Robust Treatment Rules for Censored Data [14.95510487866686]
We propose two criteria for estimating optimal treatment rules.
We show improved performance compared to existing methods.
We also demonstrate the proposed method using AIDS clinical data.
arXiv Detail & Related papers (2024-08-17T09:58:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
We operationalize a safe and interpretable framework to identify optimal treatment regimes.
Our findings support personalized treatment strategies based on a patient's medical history and pharmacological features.
arXiv Detail & Related papers (2023-10-23T19:59:10Z) - Nonparametric estimation of a covariate-adjusted counterfactual
treatment regimen response curve [2.7446241148152253]
Flexible estimation of the mean outcome under a treatment regimen is a key step toward personalized medicine.
We propose an inverse probability weighted nonparametrically efficient estimator of the smoothed regimen-response curve function.
Some finite-sample properties are explored with simulations.
arXiv Detail & Related papers (2023-09-28T01:46:24Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Median Optimal Treatment Regimes [7.241149193573696]
We propose a new median optimal treatment regime that treats individuals whose conditional median is higher under treatment.
This ensures that optimal decisions for individuals from the same group are not overly influenced by a small fraction of the group.
We introduce a new measure of value, the Average Conditional Median Effect (ACME), which summarizes across-group median treatment outcomes of a policy.
arXiv Detail & Related papers (2021-03-02T15:26:20Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Kernel Assisted Learning for Personalized Dose Finding [20.52632915107782]
An individualized dose rule recommends a dose level within a continuous safe dose range based on patient level information.
In this article, we propose a kernel assisted learning method for estimating the optimal individualized dose rule.
arXiv Detail & Related papers (2020-07-19T23:03:26Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.