Generating Rectifiable Measures through Neural Networks
- URL: http://arxiv.org/abs/2412.05109v1
- Date: Fri, 06 Dec 2024 15:10:04 GMT
- Title: Generating Rectifiable Measures through Neural Networks
- Authors: Erwin Riegler, Alex Bühler, Yang Pan, Helmut Bölcskei,
- Abstract summary: We derive universal approximation results for the class of (countably) $m$-rectifiable measures.
We extend this result to countably $m$-rectifiable measures and show that this rate still equals the rectifiability parameter $m$.
- Score: 3.974852803981997
- License:
- Abstract: We derive universal approximation results for the class of (countably) $m$-rectifiable measures. Specifically, we prove that $m$-rectifiable measures can be approximated as push-forwards of the one-dimensional Lebesgue measure on $[0,1]$ using ReLU neural networks with arbitrarily small approximation error in terms of Wasserstein distance. What is more, the weights in the networks under consideration are quantized and bounded and the number of ReLU neural networks required to achieve an approximation error of $\varepsilon$ is no larger than $2^{b(\varepsilon)}$ with $b(\varepsilon)=\mathcal{O}(\varepsilon^{-m}\log^2(\varepsilon))$. This result improves Lemma IX.4 in Perekrestenko et al. as it shows that the rate at which $b(\varepsilon)$ tends to infinity as $\varepsilon$ tends to zero equals the rectifiability parameter $m$, which can be much smaller than the ambient dimension. We extend this result to countably $m$-rectifiable measures and show that this rate still equals the rectifiability parameter $m$ provided that, among other technical assumptions, the measure decays exponentially on the individual components of the countably $m$-rectifiable support set.
Related papers
- Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits [55.957560311008926]
We propose a piecewise stationary linear bandit (PSLB) model where the quality of an arm is measured by its return averaged over all contexts.
PS$varepsilon$BAI$+$ is guaranteed to identify an $varepsilon$-optimal arm with probability $ge 1-delta$ and with a minimal number of samples.
arXiv Detail & Related papers (2024-10-10T06:15:42Z) - Approximation Rates for Shallow ReLU$^k$ Neural Networks on Sobolev Spaces via the Radon Transform [4.096453902709292]
We consider the problem of how efficiently shallow neural networks with the ReLU$k$ activation function can approximate functions from Sobolev spaces.
We provide a simple proof of nearly optimal approximation rates in a variety of cases, including when $qleq p$, $pgeq 2$, and $s leq k + (d+1)/2$.
arXiv Detail & Related papers (2024-08-20T16:43:45Z) - Interplay between depth and width for interpolation in neural ODEs [0.0]
We examine the interplay between their width $p$ and number of layer transitions $L$.
In the high-dimensional setting, we demonstrate that $p=O(N)$ neurons are likely sufficient to achieve exact control.
arXiv Detail & Related papers (2024-01-18T11:32:50Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Efficient Sampling of Stochastic Differential Equations with Positive
Semi-Definite Models [91.22420505636006]
This paper deals with the problem of efficient sampling from a differential equation, given the drift function and the diffusion matrix.
It is possible to obtain independent and identically distributed (i.i.d.) samples at precision $varepsilon$ with a cost that is $m2 d log (1/varepsilon)$
Our results suggest that as the true solution gets smoother, we can circumvent the curse of dimensionality without requiring any sort of convexity.
arXiv Detail & Related papers (2023-03-30T02:50:49Z) - On the Multidimensional Random Subset Sum Problem [0.9007371440329465]
In the Random Subset Sum Problem, given $n$ i.i.d. random variables $X_1,..., X_n$, we wish to approximate any point $z in [-1,1]$ as the sum of a subset $X_i_1(z),..., X_i_s(z)$ of them, up to error $varepsilon cdot.
We prove that, in $d$ dimensions, $n = O(d3log frac 1varepsilon cdot
arXiv Detail & Related papers (2022-07-28T08:10:43Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - On quantitative Laplace-type convergence results for some exponential
probability measures, with two applications [2.9189409618561966]
We find a limit of the sequence of measures $(pi_varepsilon)_varepsilon >0$ with density w.r.t the Lebesgue measure $(mathrmd pi_varepsilon)_varepsilon >0$ with density w.r.t the Lebesgue measure $(mathrmd pi_varepsilon)_varepsilon >0$ with density w.r.t the Lebesgue measure $(mathrmd
arXiv Detail & Related papers (2021-10-25T13:00:25Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.