論文の概要: Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection
- arxiv url: http://arxiv.org/abs/2412.05154v1
- Date: Fri, 06 Dec 2024 16:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:26.550001
- Title: Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection
- Title(参考訳): フレキシブルな3D知覚に向けて:オブジェクト中心の操作補完により3Dオブジェクト検出が可能に
- Authors: Chaoda Zheng, Feng Wang, Naiyan Wang, Shuguang Cui, Zhen Li,
- Abstract要約: 占領は3Dシーンの知覚に有望な代替手段として現れてきた。
オブジェクトbboxのサプリメントとして,オブジェクト中心の占有率を導入する。
これらの特徴は,最先端の3Dオブジェクト検出器の検出結果を著しく向上させることを示した。
- 参考スコア(独自算出の注目度): 54.78470057491049
- License:
- Abstract: While 3D object bounding box (bbox) representation has been widely used in autonomous driving perception, it lacks the ability to capture the precise details of an object's intrinsic geometry. Recently, occupancy has emerged as a promising alternative for 3D scene perception. However, constructing a high-resolution occupancy map remains infeasible for large scenes due to computational constraints. Recognizing that foreground objects only occupy a small portion of the scene, we introduce object-centric occupancy as a supplement to object bboxes. This representation not only provides intricate details for detected objects but also enables higher voxel resolution in practical applications. We advance the development of object-centric occupancy perception from both data and algorithm perspectives. On the data side, we construct the first object-centric occupancy dataset from scratch using an automated pipeline. From the algorithmic standpoint, we introduce a novel object-centric occupancy completion network equipped with an implicit shape decoder that manages dynamic-size occupancy generation. This network accurately predicts the complete object-centric occupancy volume for inaccurate object proposals by leveraging temporal information from long sequences. Our method demonstrates robust performance in completing object shapes under noisy detection and tracking conditions. Additionally, we show that our occupancy features significantly enhance the detection results of state-of-the-art 3D object detectors, especially for incomplete or distant objects in the Waymo Open Dataset.
- Abstract(参考訳): 3Dオブジェクトバウンディングボックス(bbox)表現は、自律的な運転知覚において広く使われているが、物体の内在幾何学の正確な詳細を捉える能力は欠如している。
近年,3次元シーン認識の代替として,占領が期待されている。
しかし、計算制約のため、大規模なシーンでは高解像度の占有マップの構築は不可能である。
前景の物体がシーンのごく一部しか占めていないことを認識し, 物体のボックスの補足として, 物体中心の占有率を導入する。
この表現は、検出されたオブジェクトに対して複雑な詳細を提供するだけでなく、実用的な応用においてより高度なボクセル分解を可能にする。
我々は,データとアルゴリズムの両方の観点から,対象中心の占有感の発達を推し進める。
データ側では、自動パイプラインを使用して、スクラッチから最初のオブジェクト中心の占有データセットを構築します。
アルゴリズムの観点から,動的サイズの占有生成を管理する暗黙の形状デコーダを備えた,オブジェクト中心の占有完了ネットワークを導入する。
このネットワークは、長いシーケンスからの時間情報を活用することにより、不正確なオブジェクト提案に対する完全なオブジェクト中心占有量を正確に予測する。
本手法は,ノイズ検出および追跡条件下での物体形状の完成において,頑健な性能を示す。
さらに, Waymo Open Dataset における不完全・遠距離物体検出において, 最先端の3次元物体検出装置の検出結果を著しく向上することを示す。
関連論文リスト
- Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
本稿では,一般的な物体をロボットでつかむという課題に対処する。
提案したモデルはまず、シーン内で最も可能性の高いいくつかの把握ポイントを提案する。
各グリップポイントの周囲に、モジュールはその近傍にある任意のボクセルが空か、ある物体に占有されているかを推測するように設計されている。
モデルはさらに、局所占有力向上した物体形状情報を利用して、6-DoFグリップポーズを推定する。
論文 参考訳(メタデータ) (2024-07-22T16:22:28Z) - OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
OPENと呼ばれる新しい多視点3Dオブジェクト検出器を提案する。
我々の主目的は、提案したオブジェクト指向位置埋め込みを通して、オブジェクトワイド情報をネットワークに効果的に注入することである。
OPENは、nuScenesテストベンチマークで64.4%のNDSと56.7%のmAPで、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-07-15T14:29:15Z) - Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
画像の長距離依存性をキャプチャする新しい視点対応畳み込み層を提案する。
画像画素ごとの深度軸に沿った特徴を抽出するために畳み込みカーネルを強制することにより、パースペクティブ情報をネットワークアーキテクチャに組み込む。
我々は、KITTI3Dデータセットの性能向上を実証し、簡単なベンチマークで平均23.9%の精度を達成した。
論文 参考訳(メタデータ) (2023-08-24T17:25:36Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEVは、BEVベースの3Dオブジェクト検出フレームワークにプラグインできるネットワークである。
提案手法は,BEV ベースラインに対する平均精度と nuScenes 検出スコアの両面で一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-13T06:02:31Z) - Object-level 3D Semantic Mapping using a Network of Smart Edge Sensors [25.393382192511716]
我々は,分散エッジセンサのネットワークとオブジェクトレベルの情報からなる多視点3次元意味マッピングシステムを拡張した。
提案手法は,数cm以内でのポーズ推定と,実験室環境におけるセンサネットワークを用いた実環境実験により,Behaveデータセットを用いて評価した。
論文 参考訳(メタデータ) (2022-11-21T11:13:08Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
本稿では, ボクセルをベースとした2つの3次元物体検出手法について述べる。
実験の結果,これらの手法は入力点雲が遠距離にあるため,遠距離の小さな物体を検出できないことが確認できた。
この結果から,既存手法の計算のかなりの部分は,検出に寄与しないシーンの位置に着目していることが示唆された。
論文 参考訳(メタデータ) (2021-05-21T12:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。