Privacy Drift: Evolving Privacy Concerns in Incremental Learning
- URL: http://arxiv.org/abs/2412.05183v1
- Date: Fri, 06 Dec 2024 17:04:09 GMT
- Title: Privacy Drift: Evolving Privacy Concerns in Incremental Learning
- Authors: Sayyed Farid Ahamed, Soumya Banerjee, Sandip Roy, Aayush Kapoor, Marc Vucovich, Kevin Choi, Abdul Rahman, Edward Bowen, Sachin Shetty,
- Abstract summary: This study aims to unveil the nuanced relationship between the evolution of model performance and the integrity of data privacy.
Our results highlight a complex interplay between model accuracy and privacy safeguards, revealing that enhancements in model performance can lead to increased privacy risks.
This work lays the groundwork for future research on privacy-aware machine learning, aiming to achieve a delicate balance between model accuracy and data privacy in decentralized environments.
- Score: 4.275908952997288
- License:
- Abstract: In the evolving landscape of machine learning (ML), Federated Learning (FL) presents a paradigm shift towards decentralized model training while preserving user data privacy. This paper introduces the concept of ``privacy drift", an innovative framework that parallels the well-known phenomenon of concept drift. While concept drift addresses the variability in model accuracy over time due to changes in the data, privacy drift encapsulates the variation in the leakage of private information as models undergo incremental training. By defining and examining privacy drift, this study aims to unveil the nuanced relationship between the evolution of model performance and the integrity of data privacy. Through rigorous experimentation, we investigate the dynamics of privacy drift in FL systems, focusing on how model updates and data distribution shifts influence the susceptibility of models to privacy attacks, such as membership inference attacks (MIA). Our results highlight a complex interplay between model accuracy and privacy safeguards, revealing that enhancements in model performance can lead to increased privacy risks. We provide empirical evidence from experiments on customized datasets derived from CIFAR-100 (Canadian Institute for Advanced Research, 100 classes), showcasing the impact of data and concept drift on privacy. This work lays the groundwork for future research on privacy-aware machine learning, aiming to achieve a delicate balance between model accuracy and data privacy in decentralized environments.
Related papers
- Optimal Strategies for Federated Learning Maintaining Client Privacy [8.518748080337838]
This paper studies the tradeoff between model performance and communication of the Federated Learning system.
We show that training for one local epoch per global round of training gives optimal performance while preserving the same privacy budget.
arXiv Detail & Related papers (2025-01-24T12:34:38Z) - Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
The study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication.
We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level.
Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset.
arXiv Detail & Related papers (2024-09-05T07:55:55Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
We prove a privacy bound for the KL divergence between model distributions on worst-case neighboring datasets.
We find that this KL privacy bound is largely determined by the expected squared gradient norm relative to model parameters during training.
arXiv Detail & Related papers (2023-10-31T16:13:22Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
differential privacy is used to protect machine learning models from any attacks and vulnerabilities.
This survey paper presents different differentially private machine learning algorithms categorized into two main categories.
arXiv Detail & Related papers (2022-11-19T14:20:53Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
federated learning is motivated by the privacy concern as it does not allow to transmit private data but only intermediate updates.
We propose a fully decentralized privacy-preserving solution, which is able to securely compute the updates in each step.
Numerical validation shows that the proposed approach has superior performance compared to the existing approach in terms of both the accuracy and privacy level.
arXiv Detail & Related papers (2022-09-16T09:58:03Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - LDP-FL: Practical Private Aggregation in Federated Learning with Local
Differential Privacy [20.95527613004989]
Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data.
Previous works do not give a practical solution due to three issues.
Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models.
arXiv Detail & Related papers (2020-07-31T01:08:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.