論文の概要: Global Optimization with A Power-Transformed Objective and Gaussian Smoothing
- arxiv url: http://arxiv.org/abs/2412.05204v2
- Date: Mon, 23 Dec 2024 16:15:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:01.877168
- Title: Global Optimization with A Power-Transformed Objective and Gaussian Smoothing
- Title(参考訳): 電力変換対象とガウスの平滑化による大域的最適化
- Authors: Chen Xu,
- Abstract要約: 我々の手法は、$f$の大域的最適点の$delta$-neighborhoodの解に収束することを示す。
収束率は$O(d2sigma4varepsilon-2)$であり、標準および単一ループホモトピー法よりも高速である。
- 参考スコア(独自算出の注目度): 4.275224221939364
- License:
- Abstract: We propose a novel method that solves global optimization problems in two steps: (1) perform a (exponential) power-$N$ transformation to the not-necessarily differentiable objective function $f$ and get $f_N$, and (2) optimize the Gaussian-smoothed $f_N$ with stochastic approximations. Under mild conditions on $f$, for any $\delta>0$, we prove that with a sufficiently large power $N_\delta$, this method converges to a solution in the $\delta$-neighborhood of $f$'s global optimum point. The convergence rate is $O(d^2\sigma^4\varepsilon^{-2})$, which is faster than both the standard and single-loop homotopy methods if $\sigma$ is pre-selected to be in $(0,1)$. In most of the experiments performed, our method produces better solutions than other algorithms that also apply smoothing techniques.
- Abstract(参考訳): 本研究では,(1)不必要に微分不可能な目的関数である$f$と$f_N$を変換し,(2)確率近似でガウス平滑な$f_N$を最適化する,という2つのステップで大域最適化問題を解決する手法を提案する。
任意の$\delta>0$に対して、$f$の穏やかな条件の下では、十分に大きなパワーである$N_\delta$で、この方法は、$f$のグローバル最適点の$\delta$-neighhoodの解に収束する。
収束率は$O(d^2\sigma^4\varepsilon^{-2})$であり、$\sigma$が$(0,1)$に事前選択された場合、標準および単一ループホモトピー法よりも高速である。
実験のほとんどにおいて,本手法は平滑化技術を適用した他のアルゴリズムよりも優れた解を生成する。
関連論文リスト
- An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
リプシッツの目的の滑らかな点も凸点も生成しない点の複雑さについて検討する。
私たちの分析は単純だが強力だ。
Goldstein-subdifferential set, これは最近の進歩を可能にする。
非滑らかな非最適化
論文 参考訳(メタデータ) (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness [21.865728815935665]
2つの最近の研究は、$O(epsilon-3)$サンプル複雑性を確立し、$O(epsilon)$-定常点を得る。
しかし、どちらも$mathrmploy(epsilon-1)$という大きなバッチサイズを必要とする。
本研究では,STORMアルゴリズムの単純な変種を再検討することにより,従来の2つの問題を同時に解決する。
論文 参考訳(メタデータ) (2023-02-13T00:22:28Z) - A Fully First-Order Method for Stochastic Bilevel Optimization [8.663726907303303]
一階勾配オラクルのみが利用できる場合、制約のない二段階最適化問題を考える。
完全一階近似法(F2SA)を提案し,その非漸近収束特性について検討する。
MNISTデータハイパクリーニング実験において,既存の2次手法よりも提案手法の実用性能が優れていることを示す。
論文 参考訳(メタデータ) (2023-01-26T05:34:21Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
私たちは、DEARESTが少なくとも$mathcal O(+sqrtmnLvarepsilon-2)$ 1次オラクル(IFO)コールと$mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$通信ラウンドを必要とすることを示す証拠を示します。
論文 参考訳(メタデータ) (2022-10-25T11:37:11Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
我々は,非制約のmin-max最適化問題のグローバルなサドル点を求めるために,不正確な正規化ニュートン型手法を提案し,解析する。
提案手法は有界集合内に留まるイテレートを生成し、その反復は制限関数の項で$O(epsilon-2/3)$内の$epsilon$-saddle点に収束することを示す。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Perseus: A Simple and Optimal High-Order Method for Variational
Inequalities [81.32967242727152]
VI は、$langle F(x), x - xstarrangle geq 0$ for all $x in MathcalX$ であるように、mathcalX$ で $xstar を見つける。
そこで本稿では,テキストitが行探索を必要とせず,$O(epsilon-2/(p+1))$で弱解に確実に収束する$pth$-order法を提案する。
論文 参考訳(メタデータ) (2022-05-06T13:29:14Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
最も強力で成功したモダリティの1つは、全ての分布を$ell$距離に近似し、基本的に最も近い$t$-piece次数-$d_$の少なくとも1倍大きい。
本稿では,この数値をほぼ最適に推定する手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T03:49:28Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
関数評価のみに基づく滑らかな関数のグローバル最小化を考える。
本稿では,近似関数を共同でモデル化し,大域的最小値を求める手法を検討する。
論文 参考訳(メタデータ) (2020-12-22T12:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。