Transformers Meet Relational Databases
- URL: http://arxiv.org/abs/2412.05218v1
- Date: Fri, 06 Dec 2024 17:48:43 GMT
- Title: Transformers Meet Relational Databases
- Authors: Jakub Peleška, Gustav Šír,
- Abstract summary: Transformer models have continuously expanded into all machine learning domains convertible to the underlying sequence-to-sequence representation.
We introduce a modular neural message-passing scheme that closely adheres to the formal relational model.
Our results demonstrate a superior performance of this newly proposed class of neural architectures.
- Score: 0.0
- License:
- Abstract: Transformer models have continuously expanded into all machine learning domains convertible to the underlying sequence-to-sequence representation, including tabular data. However, while ubiquitous, this representation restricts their extension to the more general case of relational databases. In this paper, we introduce a modular neural message-passing scheme that closely adheres to the formal relational model, enabling direct end-to-end learning of tabular Transformers from database storage systems. We address the challenges of appropriate learning data representation and loading, which are critical in the database setting, and compare our approach against a number of representative models from various related fields across a significantly wide range of datasets. Our results demonstrate a superior performance of this newly proposed class of neural architectures.
Related papers
- A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - The Duck's Brain: Training and Inference of Neural Networks in Modern
Database Engines [9.450046371705927]
We show how to transform data into a relational representation for training neural networks insql.
The evaluation in terms of runtime and memory consumption proves the suitability of modern database systems for matrix algebra.
arXiv Detail & Related papers (2023-12-28T20:45:06Z) - Polynomial-based Self-Attention for Table Representation learning [23.651207486167518]
Self-attention, a key component of Transformers, can lead to an oversmoothing issue.
We propose a novel matrix-based self-attention layer as a substitute for the original self-attention layer.
In our experiments with three representative table learning models equipped with our proposed layer, we illustrate that the layer effectively mitigates the oversmoothing problem.
arXiv Detail & Related papers (2023-12-12T21:49:26Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
We propose a novel framework called Graph-based Feature Synthesis (GFS)
GFS formulates relational database as a heterogeneous graph database.
In an experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases.
arXiv Detail & Related papers (2023-12-04T16:54:40Z) - Retrieval-Based Transformer for Table Augmentation [14.460363647772745]
We introduce a novel approach toward automatic data wrangling.
We aim to address table augmentation tasks, including row/column population and data imputation.
Our model consistently and substantially outperforms both supervised statistical methods and the current state-of-the-art transformer-based models.
arXiv Detail & Related papers (2023-06-20T18:51:21Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Analogous to Evolutionary Algorithm: Designing a Unified Sequence Model [58.17021225930069]
We explain the rationality of Vision Transformer by analogy with the proven practical Evolutionary Algorithm (EA)
We propose a more efficient EAT model, and design task-related heads to deal with different tasks more flexibly.
Our approach achieves state-of-the-art results on the ImageNet classification task compared with recent vision transformer works.
arXiv Detail & Related papers (2021-05-31T16:20:03Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - TransVG: End-to-End Visual Grounding with Transformers [102.11922622103613]
We present a transformer-based framework for visual grounding, namely TransVG, to address the task of grounding a language query to an image.
We show that the complex fusion modules can be replaced by a simple stack of transformer encoder layers with higher performance.
arXiv Detail & Related papers (2021-04-17T13:35:24Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Addressing Some Limitations of Transformers with Feedback Memory [51.94640029417114]
Transformers have been successfully applied to sequential, auto-regressive tasks despite being feedforward networks.
We propose the Feedback Transformer architecture that exposes all previous representations to all future representations.
We demonstrate on a variety of benchmarks in language modeling, machine translation, and reinforcement learning that the increased representation capacity can create small, shallow models with much stronger performance than comparable Transformers.
arXiv Detail & Related papers (2020-02-21T16:37:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.