Collaborative and parametric insurance on the Ethereum blockchain
- URL: http://arxiv.org/abs/2412.05321v1
- Date: Tue, 03 Dec 2024 20:03:40 GMT
- Title: Collaborative and parametric insurance on the Ethereum blockchain
- Authors: Pierre-Olivier Goffard, Stéphane Loisel,
- Abstract summary: This paper introduces a blockchain-based insurance scheme that integrates parametric and collaborative elements.
A pool of investors, referred to as surplus providers, locks funds in a smart contract, enabling blockchain users to underwrite parametric insurance contracts.
The smart contract is developed in Solidity, a high-level programming language for the blockchain, and deployed on the Sepolia testnet.
- Score: 0.0
- License:
- Abstract: This paper introduces a blockchain-based insurance scheme that integrates parametric and collaborative elements. A pool of investors, referred to as surplus providers, locks funds in a smart contract, enabling blockchain users to underwrite parametric insurance contracts. These contracts automatically trigger compensation when predefined conditions are met. The collaborative aspect is embodied in the generation of tokens, which are distributed to both surplus providers and policyholders. These tokens represent each participant's share of the surplus and grant voting rights for management decisions. The smart contract is developed in Solidity, a high-level programming language for the Ethereum blockchain, and deployed on the Sepolia testnet, with data processing and analysis conducted using Python. In addition, open-source code is provided and main research challenges are identified, so that further research can be carried out to overcome limitations of this first proof of concept.
Related papers
- Semantic Interoperability on Blockchain by Generating Smart Contracts Based on Knowledge Graphs [0.820828081284034]
In a distributed setting, transmitted data will be structured using standards for semantic interoperability.
We propose the encoding of smart contract logic using a high-level semantic Knowledge Graph.
We show that it is feasible to automatically generate smart contract code based on a semantic KG.
arXiv Detail & Related papers (2024-09-11T13:46:24Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - Blockchains for Internet of Things: Fundamentals, Applications, and Challenges [38.29453164670072]
Not every blockchain system is suitable for specific IoT applications.
Public blockchains are not suitable for storing sensitive data.
We explore the blockchain's application in three pivotal IoT areas: edge AI, communications, and healthcare.
arXiv Detail & Related papers (2024-05-08T04:25:57Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Trustless Privacy-Preserving Data Aggregation on Ethereum with Hypercube Network Topology [0.0]
We have proposed a scalable privacy-preserving data aggregation protocol for summation on the blockchain.
The protocol consists of four stages as contract deployment, user registration, private submission and proof verification.
arXiv Detail & Related papers (2023-08-29T12:51:26Z) - PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis [0.0]
We propose a Private Token Transfer System (PTTS) for the public blockchain.
For the proposed framework, zero-knowledge based protocol has been designed using Zokrates and integrated into our private token smart contract.
In the second part of the paper, we provide security and privacy analysis including the replay attack and the balance range privacy attack.
arXiv Detail & Related papers (2023-08-29T09:13:31Z) - Blockchain-Empowered Trustworthy Data Sharing: Fundamentals,
Applications, and Challenges [32.33334974604895]
Various data-sharing platforms have emerged with the growing public demand for open data and legislation mandating certain data to remain open.
Most of these platforms remain opaque, leading to many questions about data accuracy, provenance and lineage, privacy implications, consent management, and the lack of fair incentives for data providers.
With their transparency, immutability, non-repudiation, and decentralization properties, blockchains could not be more apt to answer these questions and enhance trust in a data-sharing platform.
arXiv Detail & Related papers (2023-03-12T02:56:52Z) - ACon$^2$: Adaptive Conformal Consensus for Provable Blockchain Oracles [31.439376852065713]
Power of smart contracts is enabled by interacting with off-chain data, which in turn opens the possibility to undermine the block state consistency.
We propose an adaptive conformal consensus (ACon$2$) algorithm, which derives consensus from multiple oracle contracts.
In particular, the proposed algorithm returns a consensus set, which quantifies the uncertainty of data and achieves a desired correctness guarantee.
arXiv Detail & Related papers (2022-11-17T04:37:24Z) - A formal model for ledger management systems based on contracts and
temporal logic [0.0]
In second-generation blockchains such as the ledger is coupled with smart contracts.
The current implementation of smart contracts as arbitrary programming constructs has made them susceptible to dangerous bugs.
We propose here to recompose the split and recover the reliability of databases by formalizing a notion of contract modelled as a finite-state automaton.
arXiv Detail & Related papers (2021-09-30T15:34:28Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.