論文の概要: Accurate early detection of Parkinson's disease from SPECT imaging through Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2412.05348v1
- Date: Fri, 06 Dec 2024 16:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:24.411663
- Title: Accurate early detection of Parkinson's disease from SPECT imaging through Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いたSPECT画像からのパーキンソン病の正確な早期検出
- Authors: R. Prashanth,
- Abstract要約: パーキンソン病(PD)の早期かつ正確な診断は臨床的に重要な課題である。
本研究では、SPECT画像の特徴を用いて機械学習モデルを構築し、早期PDおよびSWEDD被検体を正常から検出する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Early and accurate detection of Parkinson's disease (PD) is a crucial diagnostic challenge carrying immense clinical significance, for effective treatment regimens and patient management. For instance, a group of subjects termed SWEDD who are clinically diagnosed as PD, but show normal Single Photon Emission Computed Tomography (SPECT) scans, change their diagnosis as non-PD after few years of follow up, and in the meantime, they are treated with PD medications which do more harm than good. In this work, machine learning models are developed using features from SPECT images to detect early PD and SWEDD subjects from normal. These models were observed to perform with high accuracy. It is inferred from the study that these diagnostic models carry potential to help PD clinicians in the diagnostic process
- Abstract(参考訳): パーキンソン病(PD)の早期かつ正確な診断は、効果的な治療体制と患者管理のために、非常に重要な臨床的意義を持つ重要な診断課題である。
例えば、SWEDD(SWEDD)と呼ばれるある被験者は、臨床的にPDと診断されるが、正常な単光子放射CT(SPECT)スキャンを示し、数年経過した後に非PDと診断し、その間に、より有害なPD薬を投与する。
本研究では、SPECT画像の特徴を用いて機械学習モデルを構築し、早期PDおよびSWEDD被検体を正常から検出する。
これらのモデルは高精度に動作することが観察された。
これらの診断モデルがPD臨床医の診断過程に役立つ可能性を秘めているという研究から推測されている。
関連論文リスト
- Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling [49.52787013516891]
今回提案した Longitudinal Transformer for Survival Analysis (LTSA, Longitudinal Transformer for Survival Analysis, LTSA) は, 縦断的医用画像から動的疾患の予後を予測できる。
時間的注意分析により、最新の画像は典型的には最も影響力のあるものであるが、以前の画像は追加の予後に価値があることが示唆された。
論文 参考訳(メタデータ) (2024-05-14T17:15:28Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
本研究では,脳波信号を用いたパーキンソン病(PD)の深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、双方向ゲートリカレントユニット(Bi-GRU)、アテンションメカニズムからなるハイブリッドモデルを用いて設計されている。
その結果,提案モデルでは,トレーニングとホールドアウトデータセットの両方でPDを高精度に診断できることが示唆された。
論文 参考訳(メタデータ) (2023-08-14T20:06:19Z) - Parkinsons Disease Detection via Resting-State Electroencephalography
Using Signal Processing and Machine Learning Techniques [0.0]
パーキンソン病(英: Parkinsons Disease、PD)は、ドーパミン作動性ニューロンの変性により運動障害を引き起こす神経変性疾患である。
脳波はPD患者の異常を示す。
1つの大きな課題は、治療薬や治療薬で病気を綿密に監視するために、PDのための一貫性のある、正確で、体系的なバイオマーカーが欠如していることである。
論文 参考訳(メタデータ) (2023-03-29T06:03:05Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Parkinson's Disease Diagnosis Using Deep Learning [0.0]
パーキンソン病(Parkinson's Disease、PD)は、慢性変性疾患であり、様々な運動症状や認知症状を引き起こす。
本研究の目的は,深層学習,再帰ニューラルネットワーク(rnn),畳み込みニューラルネットワーク(cnn)を用いたpd診断プロセスの自動化である。
論文 参考訳(メタデータ) (2021-01-03T18:39:25Z) - Convolutional neural networks for automatic detection of Focal Cortical
Dysplasia [59.034649152318224]
葉性皮質異形成症(FCD)は,皮質発達異常に関連する最も一般的なてんかん性病変の1つである。
近年のディープラーニングを用いたFCD検出法は15名のラベル付きFCD患者のデータセットに適用されている。
その結果, 被験者15名中11名に対してFCDの検出に成功した。
論文 参考訳(メタデータ) (2020-10-20T15:30:37Z) - Machine learning for the diagnosis of Parkinson's disease: A systematic
review [15.463800489731373]
我々は2020年2月14日まで,PubMed と IEEE Xplore データベースを用いて,系統的な文献レビューを行った。
関連情報として抽出され,本システムレビューで提示された計209件の研究結果を含む。
これらの研究は、臨床意思決定における機械学習手法と新しいバイオマーカーの適応の可能性を示す。
論文 参考訳(メタデータ) (2020-10-13T01:14:04Z) - An Explainable Machine Learning Model for Early Detection of Parkinson's
Disease using LIME on DaTscan Imagery [0.0]
パーキンソン病(英: Parkinson's disease、PD)は、神経疾患である。
早期診断は患者の治療を改善することができ、SPECT DaTscanのようなドーパミン作動性イメージング技術によって行われる。
本研究では,任意のDaTscanをパーキンソン病の有無を正確に分類する機械学習モデルを提案する。
論文 参考訳(メタデータ) (2020-08-01T10:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。