論文の概要: Convolutional neural networks for automatic detection of Focal Cortical
Dysplasia
- arxiv url: http://arxiv.org/abs/2010.10373v1
- Date: Tue, 20 Oct 2020 15:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:39:27.486510
- Title: Convolutional neural networks for automatic detection of Focal Cortical
Dysplasia
- Title(参考訳): 畳み込みニューラルネットワークによる局所皮質異形成の自動検出
- Authors: Ruslan Aliev and Ekaterina Kondrateva and Maxim Sharaev and Oleg
Bronov and Alexey Marinets and Sergey Subbotin and Alexander Bernstein and
Evgeny Burnaev
- Abstract要約: 葉性皮質異形成症(FCD)は,皮質発達異常に関連する最も一般的なてんかん性病変の1つである。
近年のディープラーニングを用いたFCD検出法は15名のラベル付きFCD患者のデータセットに適用されている。
その結果, 被験者15名中11名に対してFCDの検出に成功した。
- 参考スコア(独自算出の注目度): 59.034649152318224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Focal cortical dysplasia (FCD) is one of the most common epileptogenic
lesions associated with cortical development malformations. However, the
accurate detection of the FCD relies on the radiologist professionalism, and in
many cases, the lesion could be missed. In this work, we solve the problem of
automatic identification of FCD on magnetic resonance images (MRI). For this
task, we improve recent methods of Deep Learning-based FCD detection and apply
it for a dataset of 15 labeled FCD patients. The model results in the
successful detection of FCD on 11 out of 15 subjects.
- Abstract(参考訳): focal cortical dysplasia (fcd) は、皮質発達異常にともなう最も一般的なてんかん原性病変の1つである。
しかし、fcdの正確な検出は放射線科医の専門性に依存しており、多くの場合、病変を見逃す可能性がある。
本研究では,磁気共鳴画像(MRI)におけるFCDの自動識別の課題を解決する。
本研究では,近年の深層学習に基づくfcd検出法を改善し,ラベル付きfcd患者15名のデータセットに適用する。
その結果, 被験者15名中11名に対してFCDの検出に成功した。
関連論文リスト
- On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Robust and Generalisable Segmentation of Subtle Epilepsy-causing
Lesions: a Graph Convolutional Approach [1.180462901068842]
FCD(Foccal cortical dysplasia)は薬剤抵抗性てんかんの主要な原因であり、手術で治療できる。
そのため、手動の傷口マスクは高価で、限定的であり、ラッター間変動が大きい。
本稿では,グラフ畳み込みネットワーク(GCN)を用いたセマンティックセグメンテーション(セマンティックセグメンテーション,セマンティックセグメンテーション,セマンティックセグメンテーション)の手法を提案する。
論文 参考訳(メタデータ) (2023-06-02T08:56:56Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
肺がんは、長年にわたり、世界中でがん関連の死因の1つとなっている。
ディープラーニング、学習アルゴリズムに基づくコンピュータ支援診断(CAD)モデルは、スクリーニングプロセスを加速することができる。
しかし、堅牢で正確なモデルを開発するには、しばしば高品質なアノテーションを備えた大規模で多様な医療データセットが必要である。
論文 参考訳(メタデータ) (2023-05-02T01:04:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using
Deep Transformers and Explainable Artificial Intelligence [20.415917092103033]
心筋炎は、多くの人の健康を脅かす重要な心血管疾患(CVD)である。
HIVなどを含む微生物やウイルスの発生は、心筋炎疾患(MCD)の発生に重要な役割を担っている
提案したCADSは,データセット,前処理,特徴抽出,分類,後処理など,いくつかのステップで構成されている。
論文 参考訳(メタデータ) (2022-10-26T10:34:20Z) - Robust Weakly Supervised Learning for COVID-19 Recognition Using
Multi-Center CT Images [8.207602203708799]
重症急性呼吸器症候群ウイルス2(SARS-CoV-2)による新型コロナウイルス感染症2019(COVID-19)
異なる病院にあるCTスキャナの様々な技術的仕様のため、CT画像の出現は、多くの自動画像認識アプローチの失敗に繋がる。
新型コロナウイルスのCTスキャン認識モデル、すなわち新型コロナウイルス情報融合診断ネットワーク(CIFD-Net)を提案する。
本モデルでは,CTスキャン画像の外観の相違を,他の最先端手法と比較して精度が高く,確実かつ効率的に解決することができる。
論文 参考訳(メタデータ) (2021-12-09T15:22:03Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - Computer-aided abnormality detection in chest radiographs in a clinical
setting via domain-adaptation [0.23624125155742057]
深層学習(DL)モデルは、放射線医が胸部X線写真から肺疾患の診断を助けるために医療センターに配備されている。
これらの訓練済みDLモデルが臨床現場で一般化する能力は、公開と非公開のラジオグラフィー間のデータ分布の変化のため、貧弱である。
本研究では,ドメインシフト検出と除去手法を導入し,この問題を克服する。
論文 参考訳(メタデータ) (2020-12-19T01:01:48Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。