論文の概要: YOLOv5-Based Object Detection for Emergency Response in Aerial Imagery
- arxiv url: http://arxiv.org/abs/2412.05394v1
- Date: Fri, 06 Dec 2024 19:40:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:30.677877
- Title: YOLOv5-Based Object Detection for Emergency Response in Aerial Imagery
- Title(参考訳): 航空画像における緊急応答のYOLOv5に基づく物体検出
- Authors: Sindhu Boddu, Arindam Mukherjee, Arindrajit Seal,
- Abstract要約: 本稿では, YOLOv5モデルを用いた空中画像における物体検出のためのロバストなアプローチを提案する。
我々は、救急車、自動車事故、警察車両、牽引車、消防車、転倒した車、火災時の車両などの重要物を特定することに重点を置いている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a robust approach for object detection in aerial imagery using the YOLOv5 model. We focus on identifying critical objects such as ambulances, car crashes, police vehicles, tow trucks, fire engines, overturned cars, and vehicles on fire. By leveraging a custom dataset, we outline the complete pipeline from data collection and annotation to model training and evaluation. Our results demonstrate that YOLOv5 effectively balances speed and accuracy, making it suitable for real-time emergency response applications. This work addresses key challenges in aerial imagery, including small object detection and complex backgrounds, and provides insights for future research in automated emergency response systems.
- Abstract(参考訳): 本稿では, YOLOv5モデルを用いた空中画像における物体検出のためのロバストなアプローチを提案する。
我々は、救急車、自動車事故、警察車両、牽引車、消防車、転倒した車、火災時の車両などの重要物を特定することに重点を置いている。
カスタムデータセットを利用することで、データ収集とアノテーションからモデルトレーニングと評価まで、完全なパイプラインを概説する。
その結果, YOLOv5は, リアルタイム緊急応答アプリケーションに適した速度と精度のバランスをとることができた。
この研究は、小さな物体の検出や複雑な背景を含む空中画像における重要な課題に対処し、自動緊急応答システムにおける将来の研究への洞察を提供する。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
超解像度と適応型軽量YOLOv5アーキテクチャを組み合わせた革新的なアプローチを提案する。
実験により,小型で密集した物体の検出において,モデルの性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Analysis and Adaptation of YOLOv4 for Object Detection in Aerial Images [0.0]
本研究は,空中画像中の物体とその位置を予測するためのYOLOv4フレームワークの適応性を示す。
トレーニングされたモデルは平均的な平均精度(mAP)が45.64%となり、推論速度はTesla K80 GPUで8.7FPSに達した。
いくつかの現代の空中物体検出器との比較研究により、YOLOv4はより優れた性能を示し、航空プラットフォームに組み込むのにより適した検出アルゴリズムが示唆された。
論文 参考訳(メタデータ) (2022-03-18T23:51:09Z) - Artificial and beneficial -- Exploiting artificial images for aerial
vehicle detection [1.4528189330418975]
本研究では,2次元cad描画から作成した車両を人工的あるいは実際の背景に重ね合わせてトップダウン画像を生成する生成手法を提案する。
修正されたRetinaNetオブジェクト検出ネットワークによる実験では、これらの画像を小さな実世界のデータセットに追加することで、検出パフォーマンスが大幅に向上することを示しています。
論文 参考訳(メタデータ) (2021-04-07T11:06:15Z) - Vehicle trajectory prediction in top-view image sequences based on deep
learning method [1.181206257787103]
周囲の車両の動きを推定し予測することは、自動車両と高度な安全システムにとって不可欠である。
道路の空中画像から得られた画像から学習した計算複雑性の低いモデルを提案する。
提案モデルでは, 対象車両とその周辺車両の移動履歴に関する画像を見るだけで, 自動車の将来の進路を予測できる。
論文 参考訳(メタデータ) (2021-02-02T20:48:19Z) - Detecting Invisible People [58.49425715635312]
我々は,追跡ベンチマークを再利用し,目立たない物体を検出するための新しい指標を提案する。
私たちは、現在の検出および追跡システムがこのタスクで劇的に悪化することを実証します。
第2に,最先端の単眼深度推定ネットワークによる観測結果を用いて,3次元で明示的に推論する動的モデルを構築した。
論文 参考訳(メタデータ) (2020-12-15T16:54:45Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z) - Vehicle-Human Interactive Behaviors in Emergency: Data Extraction from
Traffic Accident Videos [0.0]
現在、緊急時の車両と人間の対話行動を研究するには、ほとんど利用できない実際の緊急状況において、大量のデータセットが必要である。
本稿では,実際の事故映像から対話行動データ(車と人間の軌跡)を抽出する,しかし便利な方法を提案する。
リアルタイムの事故ビデオからデータを抽出する主な課題は、記録カメラが校正されておらず、監視の角度が不明であるという事実にある。
論文 参考訳(メタデータ) (2020-03-02T22:17:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。