論文の概要: KEDformer:Knowledge Extraction Seasonal Trend Decomposition for Long-term Sequence Prediction
- arxiv url: http://arxiv.org/abs/2412.05421v1
- Date: Fri, 06 Dec 2024 21:07:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:59:10.737308
- Title: KEDformer:Knowledge Extraction Seasonal Trend Decomposition for Long-term Sequence Prediction
- Title(参考訳): KEDformer:長期シーケンス予測のための知識抽出季節トレンド分解
- Authors: Zhenkai Qin, Baozhong Wei, Caifeng Gao, Jianyuan Ni,
- Abstract要約: 時系列予測はエネルギー、金融、気象学といった分野において重要な課題である。
季節差分解を統合する知識抽出駆動型フレームワークであるKEDformerを提案する。
この分解により、モデルが短期的変動と長期的パターンの両方を捉える能力が向上する。
- 参考スコア(独自算出の注目度): 1.224954637705144
- License:
- Abstract: Time series forecasting is a critical task in domains such as energy, finance, and meteorology, where accurate long-term predictions are essential. While Transformer-based models have shown promise in capturing temporal dependencies, their application to extended sequences is limited by computational inefficiencies and limited generalization. In this study, we propose KEDformer, a knowledge extraction-driven framework that integrates seasonal-trend decomposition to address these challenges. KEDformer leverages knowledge extraction methods that focus on the most informative weights within the self-attention mechanism to reduce computational overhead. Additionally, the proposed KEDformer framework decouples time series into seasonal and trend components. This decomposition enhances the model's ability to capture both short-term fluctuations and long-term patterns. Extensive experiments on five public datasets from energy, transportation, and weather domains demonstrate the effectiveness and competitiveness of KEDformer, providing an efficient solution for long-term time series forecasting.
- Abstract(参考訳): 時系列予測は、正確な長期予測が不可欠であるエネルギー、金融、気象などの領域において重要な課題である。
Transformerベースのモデルでは、時間的依存を捉えることは約束されているが、拡張シーケンスへの適用は、計算の非効率性と限定的な一般化によって制限されている。
本研究では,これらの課題に対処するために季節差分解を統合した知識抽出駆動型フレームワークであるKEDformerを提案する。
KEDformerは、自己認識機構内の最も情報に富む重みに焦点をあてる知識抽出手法を活用し、計算オーバーヘッドを削減する。
さらに、提案されたKEDformerフレームワークは時系列を季節成分とトレンド成分に分解する。
この分解により、モデルが短期的変動と長期的パターンの両方を捉える能力が向上する。
エネルギー、輸送、気象の5つのパブリックデータセットに関する大規模な実験は、KEDformerの有効性と競争性を実証し、長期連続予測のための効率的なソリューションを提供する。
関連論文リスト
- Precipitation Nowcasting Using Diffusion Transformer with Causal Attention [3.9468501770612576]
現在のディープラーニング手法は、条件と予測結果の効果的な依存関係を確立するのに不足している。
因果アテンションモデルを用いた拡散変圧器を用いた降雨キャスティングを提案する。
論文 参考訳(メタデータ) (2024-10-17T08:10:41Z) - FDF: Flexible Decoupled Framework for Time Series Forecasting with Conditional Denoising and Polynomial Modeling [5.770377200028654]
時系列予測は多くのWebアプリケーションにおいて不可欠であり、業界全体で重要な意思決定に影響を与える。
我々は拡散モデルが大きな欠点に悩まされていることを論じる。
予測性能を向上させるために,高品質な時系列表現を学習するフレキシブルデカップリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:20:43Z) - TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting [49.6208017412376]
TimeBridgeは、非定常性と依存性モデリングの間のギャップを埋めるために設計された新しいフレームワークである。
TimeBridgeは、短期予測と長期予測の両方において、最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2024-10-06T10:41:03Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
本稿では,距離重み付き自己正規化ニューラルネットワーク(DAN)を提案する。これは極性表現学習によって強化されたストラムフローの長距離予測のための新しい極性適応モデルである。
実生活における4つの水文流れデータセットにおいて、DANは、最先端の水文時系列予測法と長期時系列予測のための一般的な方法の両方を著しく上回っていることを実証した。
論文 参考訳(メタデータ) (2023-12-14T09:16:01Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
時系列予測は、その広範な応用が本質的に困難なため、既存の研究から幅広い関心を集めている。
本稿では,まず,畳み込み操作を用いてマルチスケールの時系列パターンを適応的に分解し,パターン再現の既知に基づいてパターン拡張予測手法を構築し,最終的に畳み込み操作を用いて将来的なパターンを再構築する。
時系列に存在する時間的依存関係を活用することで、MPR-Netは線形時間複雑性を達成するだけでなく、予測プロセスも解釈できる。
論文 参考訳(メタデータ) (2023-07-13T13:16:01Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformerは、Auto-Correlation機構を備えた、新しい分解アーキテクチャである。
長期的な予測では、Autoformerは6つのベンチマークで相対的に改善され、最先端の精度が得られる。
論文 参考訳(メタデータ) (2021-06-24T13:43:43Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。