論文の概要: DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA
- arxiv url: http://arxiv.org/abs/2412.05430v1
- Date: Fri, 06 Dec 2024 21:23:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:57.136872
- Title: DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA
- Title(参考訳): DART-Eval: 包括的なDNA言語モデル評価ベンチマーク
- Authors: Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, Anshul Kundaje,
- Abstract要約: 大規模なゲノムDNA言語モデル(DNALM)は、多様なDNA要素の一般化可能な表現を学習することを目的としている。
本ベンチマークでは, 機能的配列の特徴探索, 細胞型特異的制御活性の予測, 遺伝的変異の影響の予測など, 生物学的に有意義な下流課題を対象としている。
- 参考スコア(独自算出の注目度): 2.543784712990392
- License:
- Abstract: Recent advances in self-supervised models for natural language, vision, and protein sequences have inspired the development of large genomic DNA language models (DNALMs). These models aim to learn generalizable representations of diverse DNA elements, potentially enabling various genomic prediction, interpretation and design tasks. Despite their potential, existing benchmarks do not adequately assess the capabilities of DNALMs on key downstream applications involving an important class of non-coding DNA elements critical for regulating gene activity. In this study, we introduce DART-Eval, a suite of representative benchmarks specifically focused on regulatory DNA to evaluate model performance across zero-shot, probed, and fine-tuned scenarios against contemporary ab initio models as baselines. Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants. We find that current DNALMs exhibit inconsistent performance and do not offer compelling gains over alternative baseline models for most tasks, while requiring significantly more computational resources. We discuss potentially promising modeling, data curation, and evaluation strategies for the next generation of DNALMs. Our code is available at https://github.com/kundajelab/DART-Eval.
- Abstract(参考訳): 近年の自然言語、視覚、タンパク質配列の自己教師型モデルの発展は、大規模なゲノムDNA言語モデル(DNALM)の発展にインスピレーションを与えている。
これらのモデルは、多様なDNA要素の一般化可能な表現を学習することを目的としており、様々なゲノム予測、解釈、設計タスクを可能にする可能性がある。
その可能性にもかかわらず、既存のベンチマークでは、遺伝子活性の調節に不可欠な重要な非コードDNA要素の重要なクラスを含むキーダウンストリームアプリケーションにおいて、DNALMの能力を適切に評価していない。
本研究では, ゼロショット, プローブ, 微調整のシナリオをベースラインとして, モデル性能を評価するために, 規制DNAに特化して焦点を絞った, 代表的なベンチマークスイートであるDART-Evalを紹介する。
本ベンチマークでは, 機能的配列の特徴探索, 細胞型特異的制御活性の予測, 遺伝的変異の影響の予測など, 生物学的に有意義な下流課題を対象としている。
現状のDNALMは、多くのタスクにおいて代替ベースラインモデルよりも、はるかに多くの計算資源を必要としながら、不整合性能を示し、魅力的なゲインを与えていない。
我々は次世代DNALMのモデリング、データキュレーション、評価戦略について論じる。
私たちのコードはhttps://github.com/kundajelab/DART-Eval.comから入手可能です。
関連論文リスト
- DNAHLM -- DNA sequence and Human Language mixed large language Model [0.0]
本稿では、GPT-2ネットワーク上でトレーニングされた事前学習モデルについて紹介し、DNA配列と英文の組み合わせについて述べる。
次に、分類やその他の下流タスクをAlpacaフォーマット命令データに変換し、命令の微調整を行う。
このモデルはDNA関連ゼロショット予測およびマルチタスク応用においてその効果を実証している。
論文 参考訳(メタデータ) (2024-10-22T11:51:09Z) - A Benchmark Dataset for Multimodal Prediction of Enzymatic Function Coupling DNA Sequences and Natural Language [3.384797724820242]
DNA配列から遺伝子機能を予測することは、生物学における根本的な課題である。
深層学習モデルは、DNA配列を埋め込み、その酵素機能を予測するために提案されている。
科学界の生物学的機能に関する知識の多くは分類学的なラベルで表されていない。
論文 参考訳(メタデータ) (2024-07-21T19:27:43Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
マルチモーダル単細胞数に対するフローベース条件生成モデルであるセルフロー・フォー・ジェネレーションを提案する。
本研究は, 新規な生成タスクを考慮に入れた上で, 重要な生物学的データ特性の回復性の向上を示唆するものである。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - BEND: Benchmarking DNA Language Models on biologically meaningful tasks [7.005668635562045]
DNA言語モデルのベンチマークであるBENDを紹介し、現実的で生物学的に意味のある下流タスクのコレクションを特徴とする。
現在のDNA LMからの埋め込みは、一部のタスクにおいて専門家メソッドのパフォーマンスにアプローチできるが、長距離機能に関する限られた情報しか取得できない。
論文 参考訳(メタデータ) (2023-11-21T12:34:00Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPTは、全哺乳類から200億以上の塩基対をトレーニングした、一般的なDNA事前学習モデルである。
古典的なGPTモデルをバイナリ分類タスク、数値回帰タスク、包括的トークン言語で拡張することにより、DNAGPTは汎用的なDNA解析タスクを処理できる。
論文 参考訳(メタデータ) (2023-07-11T06:30:43Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
抗体の計算設計には、構造的一貫性を維持しながら、新規で多様な配列を生成することが含まれる。
近年のディープラーニングモデルでは優れた結果が得られたが、既知の抗体配列/構造対の数が限られているため、性能が劣化することが多い。
これは、ソース言語でトレーニング済みのモデルを再利用して、異なる言語で、データが少ないタスクに適応するものです。
論文 参考訳(メタデータ) (2022-10-05T20:44:55Z) - Epigenomic language models powered by Cerebras [0.0]
エピゲノムBERT(またはEBERT)は、DNA配列とペア化されたエピジェネティック状態の入力の両方に基づいて表現を学習する。
細胞型特異的転写因子結合予測タスクにおいて,EBERTの転写学習能力を示す。
ENCODE-DREAMベンチマークから得られた13つの評価データセットのうち4つは、我々の微調整されたモデルであり、挑戦のリーダーボードでは総合3位である。
論文 参考訳(メタデータ) (2021-12-14T17:23:42Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
我々は、GeneBERTと呼ばれる、多モードかつ自己管理的な方法でゲノムデータを事前学習するための、単純かつ効果的なアプローチを提案する。
我々はATAC-seqデータセットで1700万のゲノム配列でモデルを事前訓練する。
論文 参考訳(メタデータ) (2021-10-11T12:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。