論文の概要: Model Decides How to Tokenize: Adaptive DNA Sequence Tokenization with MxDNA
- arxiv url: http://arxiv.org/abs/2412.13716v1
- Date: Wed, 18 Dec 2024 10:55:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:47:36.422301
- Title: Model Decides How to Tokenize: Adaptive DNA Sequence Tokenization with MxDNA
- Title(参考訳): MxDNAを用いたアダプティブDNAシークエンストークン化
- Authors: Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, Chaoqi Liang, Xinzhu Ma, Nanqing Dong, Wanli Ouyang,
- Abstract要約: MxDNAは、モデルが段階的に有効なDNAトークン化戦略を自律的に学習する新しいフレームワークである。
我々は、MxDNAが従来の方法とは異なるユニークなトークン化戦略を学習し、自己教師付き事前学習中にトークンレベルでゲノム機能をキャプチャすることを示す。
- 参考スコア(独自算出の注目度): 44.630039477717624
- License:
- Abstract: Foundation models have made significant strides in understanding the genomic language of DNA sequences. However, previous models typically adopt the tokenization methods designed for natural language, which are unsuitable for DNA sequences due to their unique characteristics. In addition, the optimal approach to tokenize DNA remains largely under-explored, and may not be intuitively understood by humans even if discovered. To address these challenges, we introduce MxDNA, a novel framework where the model autonomously learns an effective DNA tokenization strategy through gradient decent. MxDNA employs a sparse Mixture of Convolution Experts coupled with a deformable convolution to model the tokenization process, with the discontinuous, overlapping, and ambiguous nature of meaningful genomic segments explicitly considered. On Nucleotide Transformer Benchmarks and Genomic Benchmarks, MxDNA demonstrates superior performance to existing methods with less pretraining data and time, highlighting its effectiveness. Finally, we show that MxDNA learns unique tokenization strategy distinct to those of previous methods and captures genomic functionalities at a token level during self-supervised pretraining. Our MxDNA aims to provide a new perspective on DNA tokenization, potentially offering broad applications in various domains and yielding profound insights.
- Abstract(参考訳): 基礎モデルはDNA配列のゲノム言語を理解するために大きな進歩を遂げてきた。
しかし、従来のモデルは一般的に自然言語用に設計されたトークン化法を採用しており、その特徴からDNA配列には適さない。
さらに、DNAをトークン化するための最適なアプローチは、ほとんど探索されていないままであり、たとえ発見されても、人間によって直感的に理解されることはないかもしれない。
これらの課題に対処するために、モデルがグラデーションにより効果的なDNAトークン化戦略を自律的に学習する新しいフレームワークであるMxDNAを紹介する。
MxDNAは、変形可能な畳み込みと結合してトークン化プロセスをモデル化し、意味のあるゲノムセグメントの不連続、重複、曖昧な性質を明示的に考慮している。
Nucleotide Transformer BenchmarksとGenomic Benchmarksでは、MxDNAは事前学習の少ない既存のメソッドよりも優れた性能を示し、その効果を強調している。
最後に、MxDNAは、従来の方法とは異なるユニークなトークン化戦略を学習し、自己教師付き事前学習中にトークンレベルでゲノム機能をキャプチャすることを示す。
私たちのMxDNAは、DNAのトークン化に関する新しい視点を提供することを目的としています。
関連論文リスト
- HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model [70.69095062674944]
ハイブリッドトランスフォーマー-マンバ2アーキテクチャを組み込んだデコーダのみのDNA言語モデルであるHybriDNAを提案する。
このハイブリッド設計により、HybriDNAはDNA配列を最大131kbまで効率よく単一のヌクレオチド分解能で処理できる。
HybriDNAは、BEND、GUE、LRBベンチマークから算出された33のDNA理解データセットにまたがる最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-15T14:23:43Z) - DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA [2.543784712990392]
大規模なゲノムDNA言語モデル(DNALM)は、多様なDNA要素の一般化可能な表現を学習することを目的としている。
本ベンチマークでは, 機能的配列の特徴探索, 細胞型特異的制御活性の予測, 遺伝的変異の影響の予測など, 生物学的に有意義な下流課題を対象としている。
論文 参考訳(メタデータ) (2024-12-06T21:23:35Z) - Dy-mer: An Explainable DNA Sequence Representation Scheme using Sparse Recovery [6.733319363951907]
textbfDy-merはスパースリカバリに基づく説明可能で堅牢な表現スキームである。
DNAプロモーターの分類における最先端のパフォーマンスを達成し、textbf13%の精度向上をもたらす。
論文 参考訳(メタデータ) (2024-07-06T15:08:31Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
textscLanguage prefix ftextscIne-tuning for textscGentextscOmes。
DNA基盤モデルとは異なり、textscLingoは自然言語基盤モデルの文脈的手がかりを戦略的に活用している。
textscLingoはさらに、適応的なランクサンプリング方法により、下流の細調整タスクを数多く許容する。
論文 参考訳(メタデータ) (2024-02-12T21:40:45Z) - BEND: Benchmarking DNA Language Models on biologically meaningful tasks [7.005668635562045]
DNA言語モデルのベンチマークであるBENDを紹介し、現実的で生物学的に意味のある下流タスクのコレクションを特徴とする。
現在のDNA LMからの埋め込みは、一部のタスクにおいて専門家メソッドのパフォーマンスにアプローチできるが、長距離機能に関する限られた情報しか取得できない。
論文 参考訳(メタデータ) (2023-11-21T12:34:00Z) - Toward Understanding BERT-Like Pre-Training for DNA Foundation Models [78.48760388079523]
既存のDNA配列の事前訓練方法は、NLPからのBERT事前訓練の直接的な採用に依存している。
マスク境界を連続的に拡張することにより,BERTライクな事前学習作業の難易度を徐々に向上させるRandomMaskという新しい手法を提案する。
RandomMaskは、マシューのエピジェネティック・マーク・予測の相関係数の68.16%を突破し、ベースラインの19.85%を突破した。
論文 参考訳(メタデータ) (2023-10-11T16:40:57Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPTは、全哺乳類から200億以上の塩基対をトレーニングした、一般的なDNA事前学習モデルである。
古典的なGPTモデルをバイナリ分類タスク、数値回帰タスク、包括的トークン言語で拡張することにより、DNAGPTは汎用的なDNA解析タスクを処理できる。
論文 参考訳(メタデータ) (2023-07-11T06:30:43Z) - HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution [76.97231739317259]
本稿では,ヒト参照ゲノム上に,最大100万個のトークンを単一ヌクレオチドレベルで有するゲノム基盤モデルであるHyenaDNAについて紹介する。
Nucleotide Transformerの微調整されたベンチマークでは、HyenaDNAが18のデータセットのうち12の最先端(SotA)に到達した。
論文 参考訳(メタデータ) (2023-06-27T20:46:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。