Granular Ball K-Class Twin Support Vector Classifier
- URL: http://arxiv.org/abs/2412.05438v1
- Date: Fri, 06 Dec 2024 21:47:49 GMT
- Title: Granular Ball K-Class Twin Support Vector Classifier
- Authors: M. A. Ganaie, Vrushank Ahire, Anouck Girard,
- Abstract summary: Granular Ball K-Class Twin Support Vector (GB-TWKSVC)
GB-TWKSVC is a novel multi-class classification framework that combines Twin Support Vector Machines with granular ball computing.
Results demonstrate GB-TWKSVC's broad applicability across domains including pattern recognition, fault diagnosis, and large-scale data analytics.
- Score: 5.543867614999908
- License:
- Abstract: This paper introduces the Granular Ball K-Class Twin Support Vector Classifier (GB-TWKSVC), a novel multi-class classification framework that combines Twin Support Vector Machines (TWSVM) with granular ball computing. The proposed method addresses key challenges in multi-class classification by utilizing granular ball representation for improved noise robustness and TWSVM's non-parallel hyperplane architecture solves two smaller quadratic programming problems, enhancing efficiency. Our approach introduces a novel formulation that effectively handles multi-class scenarios, advancing traditional binary classification methods. Experimental evaluation on diverse benchmark datasets shows that GB-TWKSVC significantly outperforms current state-of-the-art classifiers in both accuracy and computational performance. The method's effectiveness is validated through comprehensive statistical tests and complexity analysis. Our work advances classification algorithms by providing a mathematically sound framework that addresses the scalability and robustness needs of modern machine learning applications. The results demonstrate GB-TWKSVC's broad applicability across domains including pattern recognition, fault diagnosis, and large-scale data analytics, establishing it as a valuable addition to the classification algorithm landscape.
Related papers
- Kernel-Free Universum Quadratic Surface Twin Support Vector Machines for Imbalanced Data [1.8990839669542954]
Binary classification tasks with imbalanced classes pose significant challenges in machine learning.
We introduce a novel approach to tackle this issue by leveraging Universum points to support the minority class within quadratic twin support vector machine models.
By incorporating Universum points, our approach enhances classification accuracy and generalization performance on imbalanced datasets.
arXiv Detail & Related papers (2024-12-02T19:57:59Z) - Granular-Balls based Fuzzy Twin Support Vector Machine for Classification [12.738411525651667]
We introduce the granular-ball twin support vector machine (GBTWSVM) classifier, which integrates granular-ball computing (GBC) with the twin support vector machine (TWSVM)
We design the membership and non-membership functions of granular-balls using Pythagorean fuzzy sets to differentiate the contributions of granular-balls in various regions.
arXiv Detail & Related papers (2024-08-01T16:43:21Z) - A robust three-way classifier with shadowed granular-balls based on justifiable granularity [53.39844791923145]
We construct a robust three-way classifier with shadowed GBs for uncertain data.
Our model demonstrates in managing uncertain data and effectively mitigates classification risks.
arXiv Detail & Related papers (2024-07-03T08:54:45Z) - MISS: Multiclass Interpretable Scoring Systems [13.902264070785986]
We present a machine-learning approach for constructing Multiclass Interpretable Scoring Systems (MISS)
MISS is a fully data-driven methodology for single, sparse, and user-friendly scoring systems for multiclass classification problems.
Results indicate that our approach is competitive with other machine learning models in terms of classification performance metrics and provides well-calibrated class probabilities.
arXiv Detail & Related papers (2024-01-10T10:57:12Z) - Efficient Training of One Class Classification-SVMs [0.0]
This study examines the use of a highly effective training method to conduct one-class classification.
In this paper, an effective algorithm for dual soft-margin one-class SVM training is presented.
arXiv Detail & Related papers (2023-09-28T15:35:16Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
Two new algorithms are proposed to address the class overlap issue in the dataset.
The proposed design is evaluated for both binary and multi-category classification.
arXiv Detail & Related papers (2022-05-08T21:06:42Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Fine-Grained Visual Classification via Progressive Multi-Granularity
Training of Jigsaw Patches [67.51747235117]
Fine-grained visual classification (FGVC) is much more challenging than traditional classification tasks.
Recent works mainly tackle this problem by focusing on how to locate the most discriminative parts.
We propose a novel framework for fine-grained visual classification to tackle these problems.
arXiv Detail & Related papers (2020-03-08T19:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.