Robust Twin Parametric Margin Support Vector Machine for Multiclass Classification
- URL: http://arxiv.org/abs/2306.06213v2
- Date: Wed, 22 May 2024 11:58:19 GMT
- Title: Robust Twin Parametric Margin Support Vector Machine for Multiclass Classification
- Authors: Renato De Leone, Francesca Maggioni, Andrea Spinelli,
- Abstract summary: We present novel Twin Parametric Margin Support Vector Machine (TPMSVM) models to tackle the problem of multiclass classification.
We construct bounded-by-norm uncertainty sets around each sample and derive the robust counterpart of deterministic models.
We test the proposed TPMSVM methodology on real-world datasets, showing the good performance of the approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present novel Twin Parametric Margin Support Vector Machine (TPMSVM) models to tackle the problem of multiclass classification. We explore the cases of linear and nonlinear classifiers and propose two possible alternatives for the final decision function. Since real-world observations are plagued by measurement errors and noise, data uncertainties need to be considered in the optimization models. For this reason, we construct bounded-by-norm uncertainty sets around each sample and derive the robust counterpart of deterministic models by means of robust optimization techniques. Finally, we test the proposed TPMSVM methodology on real-world datasets, showing the good performance of the approach.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Cost-sensitive probabilistic predictions for support vector machines [1.743685428161914]
Support vector machines (SVMs) are widely used and constitute one of the best examined and used machine learning models.
We propose a novel approach to generate probabilistic outputs for the SVM.
arXiv Detail & Related papers (2023-10-09T11:00:17Z) - Projection based fuzzy least squares twin support vector machine for
class imbalance problems [0.9668407688201361]
We propose a novel fuzzy based approach to deal with class imbalanced as well noisy datasets.
The proposed algorithms are evaluated on several benchmark and synthetic datasets.
arXiv Detail & Related papers (2023-09-27T14:28:48Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Optimal Model Averaging of Support Vector Machines in Diverging Model
Spaces [34.0132394492309]
Support vector machine (SVM) is a powerful classification method that has achieved great success in many fields.
We propose a frequentist model averaging procedure for SVM which selects the optimal weight by cross validation.
We show optimality of the proposed method in the sense that the ratio of its hinge loss to the lowest possible loss converges to one.
arXiv Detail & Related papers (2021-12-24T06:31:51Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
We propose to optimize the distributional sliced-Wasserstein distance between the output of the autoencoder and the empirical data distribution.
We turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space.
We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results.
arXiv Detail & Related papers (2021-06-11T08:55:00Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
We propose an embedded feature selection method based on a min-max optimization problem.
By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado.
The efficiency and usefulness of our approach are tested on several benchmark data sets.
arXiv Detail & Related papers (2020-04-21T09:40:38Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.