論文の概要: COOOL: Challenge Of Out-Of-Label A Novel Benchmark for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2412.05462v1
- Date: Fri, 06 Dec 2024 23:01:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:28.307237
- Title: COOOL: Challenge Of Out-Of-Label A Novel Benchmark for Autonomous Driving
- Title(参考訳): COOOL:Of-Labelの課題は自動運転の新しいベンチマーク
- Authors: Ali K. AlShami, Ananya Kalita, Ryan Rabinowitz, Khang Lam, Rishabh Bezbarua, Terrance Boult, Jugal Kalita,
- Abstract要約: リスク検出のための新しいデータセットを導入し、様々なタスクに適用可能な多目的評価指標を提供する。
COOOLは200以上のダッシュカム指向のビデオコレクションで構成されており、人間のラベル付け者が関心のあるオブジェクトを識別するために注釈を付けている。
データセットのサイズとデータの複雑さのため、COOOLは評価ベンチマークとしてのみ機能する。
- 参考スコア(独自算出の注目度): 5.766136300380401
- License:
- Abstract: As the Computer Vision community rapidly develops and advances algorithms for autonomous driving systems, the goal of safer and more efficient autonomous transportation is becoming increasingly achievable. However, it is 2024, and we still do not have fully self-driving cars. One of the remaining core challenges lies in addressing the novelty problem, where self-driving systems still struggle to handle previously unseen situations on the open road. With our Challenge of Out-Of-Label (COOOL) benchmark, we introduce a novel dataset for hazard detection, offering versatile evaluation metrics applicable across various tasks, including novelty-adjacent domains such as Anomaly Detection, Open-Set Recognition, Open Vocabulary, and Domain Adaptation. COOOL comprises over 200 collections of dashcam-oriented videos, annotated by human labelers to identify objects of interest and potential driving hazards. It includes a diverse range of hazards and nuisance objects. Due to the dataset's size and data complexity, COOOL serves exclusively as an evaluation benchmark.
- Abstract(参考訳): Computer Visionコミュニティは、自動運転システムのアルゴリズムを急速に発展させ、進化させていくにつれて、より安全で効率的な自動運転の目標がますます達成されつつある。
しかし、それは2024年であり、私たちはまだ完全な自動運転車を持っていません。
残る課題の1つは、自動運転システムがまだ未確認のオープンロードの状況に対処するのに苦戦しているノベルティの問題に対処することにある。
リスク検出のための新しいデータセットを導入し、異常検出、オープンセット認識、オープンボキャブラリ、ドメイン適応などの新規な隣接ドメインを含む、さまざまなタスクに適用可能な多種多様な評価指標を提供する。
COOOLは200本以上のダッシュカム指向のビデオからなり、人間のラベルが注釈を付け、興味のある物体と潜在的な運転の危険を識別する。
多様な危険物や迷惑物を含む。
データセットのサイズとデータの複雑さのため、COOOLは評価ベンチマークとしてのみ機能する。
関連論文リスト
- The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
2024年のRoboDrive Challengeは、駆動認識技術の発展を促進するために作られた。
今年の挑戦は5つの異なるトラックで構成され、11カ国の93の機関から140の登録チームが集まった。
競争は15の最高パフォーマンスのソリューションで頂点に達した。
論文 参考訳(メタデータ) (2024-05-14T17:59:57Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
本稿では,過去10年間に出版されたコンピュータビジョンと自動運転に関する論文をレビューする。
特に、まず自律運転システムの開発について検討し、各国の主要自動車メーカーによって開発されたこれらのシステムを要約する。
そこで, 深度推定, 物体検出, 車線検出, 信号認識など, 自律運転におけるコンピュータビジョン応用の概要を概観する。
論文 参考訳(メタデータ) (2023-11-15T16:41:18Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
未知の物体を検出する新しいパイプラインを提案する。
我々は,最先端の美術品検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを利用する。
論文 参考訳(メタデータ) (2022-05-03T10:58:41Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - The NEOLIX Open Dataset for Autonomous Driving [1.4091801425319965]
自律走行領域におけるNEOLIXデータセットとその応用について述べる。
私たちのデータセットには、ポイントクラウドラベル付き約30,000フレームと、アノテーション付き600k以上の3Dバウンディングボックスが含まれています。
論文 参考訳(メタデータ) (2020-11-27T02:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。