UNet++ and LSTM combined approach for Breast Ultrasound Image Segmentation
- URL: http://arxiv.org/abs/2412.05585v1
- Date: Sat, 07 Dec 2024 08:39:31 GMT
- Title: UNet++ and LSTM combined approach for Breast Ultrasound Image Segmentation
- Authors: Saba Hesaraki, Morteza Akbari, Ramin Mousa,
- Abstract summary: This research endeavors to enrich the UNet++ architecture by integrating LSTM layers and self-attention mechanisms.
Through the amalgamation of our proposed methodology with data augmentation on the BUSI with GT dataset, an accuracy rate of 98.88%, specificity of 99.53%, precision of 95.34%, sensitivity of 91.20%, F1-score of 93.74, and Dice coefficient of 92.74% are achieved.
- Score: 0.0
- License:
- Abstract: Breast cancer stands as a prevalent cause of fatality among females on a global scale, with prompt detection playing a pivotal role in diminishing mortality rates. The utilization of ultrasound scans in the BUSI dataset for medical imagery pertaining to breast cancer has exhibited commendable segmentation outcomes through the application of UNet and UNet++ networks. Nevertheless, a notable drawback of these models resides in their inattention towards the temporal aspects embedded within the images. This research endeavors to enrich the UNet++ architecture by integrating LSTM layers and self-attention mechanisms to exploit temporal characteristics for segmentation purposes. Furthermore, the incorporation of a Multiscale Feature Extraction Module aims to grasp varied scale features within the UNet++. Through the amalgamation of our proposed methodology with data augmentation on the BUSI with GT dataset, an accuracy rate of 98.88%, specificity of 99.53%, precision of 95.34%, sensitivity of 91.20%, F1-score of 93.74, and Dice coefficient of 92.74% are achieved. These findings demonstrate competitiveness with cutting-edge techniques outlined in existing literature.
Related papers
- Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging [65.83291923029985]
Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024.
Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability.
We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment PCa lesions from a 200 CDI$
arXiv Detail & Related papers (2025-01-15T22:23:41Z) - Machine-agnostic Automated Lumbar MRI Segmentation using a Cascaded Model Based on Generative Neurons [0.22198209072577352]
We introduce a novel machine-agnostic approach for segmenting lumbar vertebrae and intervertebral discs from MRI images.
We capitalize on a unique dataset comprising images from 12 scanners and 34 subjects, enhanced through strategic preprocessing and data augmentation techniques.
Our model, combined with a DenseNet121 encoder, demonstrates excellent performance in lumbar vertebrae and IVD segmentation with a mean Intersection over Union (IoU) of 83.66%, a sensitivity of 91.44%, and Dice Similarity Coefficient (DSC) of 91.03%.
arXiv Detail & Related papers (2024-11-23T21:34:29Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients [3.676588766498097]
Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality.
This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data.
arXiv Detail & Related papers (2024-09-24T13:33:46Z) - Exploiting Precision Mapping and Component-Specific Feature Enhancement for Breast Cancer Segmentation and Identification [0.0]
We propose novel Deep Learning (DL) frameworks for breast lesion segmentation and classification.
We introduce a precision mapping mechanism (PMM) for a precision mapping and attention-driven LinkNet (PMAD-LinkNet) segmentation framework.
We also introduce a component-specific feature enhancement module (CSFEM) for a component-specific feature-enhanced classifier (CSFEC-Net)
arXiv Detail & Related papers (2024-07-03T06:40:26Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal lymph nodes (LNs)
Deep convolutional neural networks frequently segment items in medical photographs.
A well-established deep learning technique UNet was modified using bilinear and total generalized variation (TGV) based up strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution.
arXiv Detail & Related papers (2022-11-24T02:55:20Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.