Graph with Sequence: Broad-Range Semantic Modeling for Fake News Detection
- URL: http://arxiv.org/abs/2412.05672v2
- Date: Fri, 07 Feb 2025 02:44:58 GMT
- Title: Graph with Sequence: Broad-Range Semantic Modeling for Fake News Detection
- Authors: Junwei Yin, Min Gao, Kai Shu, Wentao Li, Yinqiu Huang, Zongwei Wang,
- Abstract summary: BREAK is a broad-range semantics model for fake news detection.<n>It leverages a fully connected graph to capture comprehensive semantics.<n>It employs dual denoising modules to minimize both structural and feature noise.
- Score: 18.993270952535465
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid proliferation of fake news on social media threatens social stability, creating an urgent demand for more effective detection methods. While many promising approaches have emerged, most rely on content analysis with limited semantic depth, leading to suboptimal comprehension of news content.To address this limitation, capturing broader-range semantics is essential yet challenging, as it introduces two primary types of noise: fully connecting sentences in news graphs often adds unnecessary structural noise, while highly similar but authenticity-irrelevant sentences introduce feature noise, complicating the detection process. To tackle these issues, we propose BREAK, a broad-range semantics model for fake news detection that leverages a fully connected graph to capture comprehensive semantics while employing dual denoising modules to minimize both structural and feature noise. The semantic structure denoising module balances the graph's connectivity by iteratively refining it between two bounds: a sequence-based structure as a lower bound and a fully connected graph as the upper bound. This refinement uncovers label-relevant semantic interrelations structures. Meanwhile, the semantic feature denoising module reduces noise from similar semantics by diversifying representations, aligning distinct outputs from the denoised graph and sequence encoders using KL-divergence to achieve feature diversification in high-dimensional space. The two modules are jointly optimized in a bi-level framework, enhancing the integration of denoised semantics into a comprehensive representation for detection. Extensive experiments across four datasets demonstrate that BREAK significantly outperforms existing fake news detection methods.
Related papers
- Dual Semantic-Aware Network for Noise Suppressed Ultrasound Video Segmentation [21.117226880898418]
We propose a novel framework designed to enhance noise robustness in ultrasound video segmentation.<n>The Dual Semantic-Aware Network (DSANet) fosters mutual semantic awareness between local and global features.<n>Our model avoids pixel-level feature dependencies, it achieves significantly higher inference FPS than video-based methods, and even surpasses some image-based models.
arXiv Detail & Related papers (2025-07-10T05:41:17Z) - A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation [8.690665954055476]
We propose the Integration of Discriminative and generative learning for Boundary Refinement (IDGBR) framework.<n>The framework first generates a coarse segmentation map using a discriminative backbone model.<n>This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation.
arXiv Detail & Related papers (2025-07-02T10:47:59Z) - Rethinking Contrastive Learning in Graph Anomaly Detection: A Clean-View Perspective [54.605073936695575]
Graph anomaly detection aims to identify unusual patterns in graph-based data, with wide applications in fields such as web security and financial fraud detection.<n>Existing methods rely on contrastive learning, assuming that a lower similarity between a node and its local subgraph indicates abnormality.<n>The presence of interfering edges invalidates this assumption, since it introduces disruptive noise that compromises the contrastive learning process.<n>We propose a Clean-View Enhanced Graph Anomaly Detection framework (CVGAD), which includes a multi-scale anomaly awareness module to identify key sources of interference in the contrastive learning process.
arXiv Detail & Related papers (2025-05-23T15:05:56Z) - A Noise-Resilient Semi-Supervised Graph Autoencoder for Overlapping Semantic Community Detection [0.0]
Community detection in networks with overlapping structures remains a significant challenge.<n>We propose a semi-supervised graph autoencoder that combines graph multi-head attention and modularity to robustly detect overlapping communities.<n>Key innovations include a noise-resistant architecture and a semantic semi-supervised design optimized for community quality.
arXiv Detail & Related papers (2025-05-09T11:34:07Z) - BBQRec: Behavior-Bind Quantization for Multi-Modal Sequential Recommendation [15.818669767036592]
We propose a Behavior-Bind multi-modal Quantization for Sequential Recommendation (BBQRec) featuring dual-aligned quantization and semantics-aware sequence modeling.
BBQRec disentangles modality-agnostic behavioral patterns from noisy modality-specific features through contrastive codebook learning.
We design a discretized similarity reweighting mechanism that dynamically adjusts self-attention scores using quantized semantic relationships.
arXiv Detail & Related papers (2025-04-09T07:19:48Z) - The Silent Assistant: NoiseQuery as Implicit Guidance for Goal-Driven Image Generation [31.599902235859687]
We propose to leverage an aligned Gaussian noise as implicit guidance to complement explicit user-defined inputs, such as text prompts.
NoiseQuery enables fine-grained control and yields significant performance boosts over high-level semantics and over low-level visual attributes.
arXiv Detail & Related papers (2024-12-06T14:59:00Z) - MSynFD: Multi-hop Syntax aware Fake News Detection [27.046529059563863]
Social media platforms have fueled the rapid dissemination of fake news, posing threats to our real-life society.
Existing methods use multimodal data or contextual information to enhance the detection of fake news.
We propose a novel multi-hop syntax aware fake news detection (MSynFD) method, which incorporates complementary syntax information to deal with subtle twists in fake news.
arXiv Detail & Related papers (2024-02-18T05:40:33Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations.
Non-autoregressive framework enhances controllability, and duration diffusion model enables diversified prosodic expression.
arXiv Detail & Related papers (2023-09-27T09:27:03Z) - Minimally-Supervised Speech Synthesis with Conditional Diffusion Model
and Language Model: A Comparative Study of Semantic Coding [57.42429912884543]
We propose Diff-LM-Speech, Tetra-Diff-Speech and Tri-Diff-Speech to solve high dimensionality and waveform distortion problems.
We also introduce a prompt encoder structure based on a variational autoencoder and a prosody bottleneck to improve prompt representation ability.
Experimental results show that our proposed methods outperform baseline methods.
arXiv Detail & Related papers (2023-07-28T11:20:23Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input.
We first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise.
We propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models.
arXiv Detail & Related papers (2023-06-01T19:04:17Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot semantic segmentation is the task of learning to locate each pixel of a novel class in a query image with only a few annotated support images.
We propose a Feature-Enhanced Context-Aware Network (FECANet) to suppress the matching noise caused by inter-class local similarity.
In addition, we propose a novel correlation reconstruction module that encodes extra correspondence relations between foreground and background and multi-scale context semantic features.
arXiv Detail & Related papers (2023-01-19T16:31:13Z) - Robust Semantic Communications with Masked VQ-VAE Enabled Codebook [56.63571713657059]
We propose a framework for the robust end-to-end semantic communication systems to combat the semantic noise.
To combat the semantic noise, the adversarial training with weight is developed to incorporate the samples with semantic noise in the training dataset.
We develop a feature importance module (FIM) to suppress the noise-related and task-unrelated features.
arXiv Detail & Related papers (2022-06-08T16:58:47Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.