A Noise-Resilient Semi-Supervised Graph Autoencoder for Overlapping Semantic Community Detection
- URL: http://arxiv.org/abs/2505.05965v1
- Date: Fri, 09 May 2025 11:34:07 GMT
- Title: A Noise-Resilient Semi-Supervised Graph Autoencoder for Overlapping Semantic Community Detection
- Authors: Abdelfateh Bekkair, Slimane Bellaouar, Slimane Oulad-Naoui,
- Abstract summary: Community detection in networks with overlapping structures remains a significant challenge.<n>We propose a semi-supervised graph autoencoder that combines graph multi-head attention and modularity to robustly detect overlapping communities.<n>Key innovations include a noise-resistant architecture and a semantic semi-supervised design optimized for community quality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection in networks with overlapping structures remains a significant challenge, particularly in noisy real-world environments where integrating topology, node attributes, and prior information is critical. To address this, we propose a semi-supervised graph autoencoder that combines graph multi-head attention and modularity maximization to robustly detect overlapping communities. The model learns semantic representations by fusing structural, attribute, and prior knowledge while explicitly addressing noise in node features. Key innovations include a noise-resistant architecture and a semantic semi-supervised design optimized for community quality through modularity constraints. Experiments demonstrate superior performance the model outperforms state-of-the-art methods in overlapping community detection (improvements in NMI and F1-score) and exhibits exceptional robustness to attribute noise, maintaining stable performance under 60\% feature corruption. These results highlight the importance of integrating attribute semantics and structural patterns for accurate community discovery in complex networks.
Related papers
- Graph with Sequence: Broad-Range Semantic Modeling for Fake News Detection [18.993270952535465]
BREAK is a broad-range semantics model for fake news detection.<n>It leverages a fully connected graph to capture comprehensive semantics.<n>It employs dual denoising modules to minimize both structural and feature noise.
arXiv Detail & Related papers (2024-12-07T14:35:46Z) - HACD: Harnessing Attribute Semantics and Mesoscopic Structure for Community Detection [3.389327931408283]
Community detection plays a pivotal role in uncovering closely connected subgraphs.
Previous research has effectively leveraged network topology and attribute information for attributed community detection.
We propose HACD, a novel attributed community detection model based on heterogeneous graph attention networks.
arXiv Detail & Related papers (2024-11-04T10:16:59Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs)
We propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE)
arXiv Detail & Related papers (2024-07-29T12:24:28Z) - Modularity aided consistent attributed graph clustering via coarsening [6.522020196906943]
Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities.
We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique.
Our algorithm seamlessly integrates graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance.
arXiv Detail & Related papers (2024-07-09T10:42:19Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
arXiv Detail & Related papers (2024-05-10T15:27:43Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Reconstruction Enhanced Multi-View Contrastive Learning for Anomaly
Detection on Attributed Networks [35.93516937521393]
This paper proposes a self-supervised learning framework that jointly optimize a multi-view contrastive learning-based module and an attribute reconstruction-based module to more accurately detect anomalies on attributed networks.
Experiments conducted on five benchmark datasets show our model outperforms current state-of-the-art models.
arXiv Detail & Related papers (2022-05-10T11:35:32Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
We propose a simple framework for amortized community detection.
We combine the expressive power of GNNs with recent methods for amortized clustering.
We evaluate several models from our framework on synthetic and real datasets.
arXiv Detail & Related papers (2020-10-29T16:18:48Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.