BBQRec: Behavior-Bind Quantization for Multi-Modal Sequential Recommendation
- URL: http://arxiv.org/abs/2504.06636v1
- Date: Wed, 09 Apr 2025 07:19:48 GMT
- Title: BBQRec: Behavior-Bind Quantization for Multi-Modal Sequential Recommendation
- Authors: Kaiyuan Li, Rui Xiang, Yong Bai, Yongxiang Tang, Yanhua Cheng, Xialong Liu, Peng Jiang, Kun Gai,
- Abstract summary: We propose a Behavior-Bind multi-modal Quantization for Sequential Recommendation (BBQRec) featuring dual-aligned quantization and semantics-aware sequence modeling.<n>BBQRec disentangles modality-agnostic behavioral patterns from noisy modality-specific features through contrastive codebook learning.<n>We design a discretized similarity reweighting mechanism that dynamically adjusts self-attention scores using quantized semantic relationships.
- Score: 15.818669767036592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal sequential recommendation systems leverage auxiliary signals (e.g., text, images) to alleviate data sparsity in user-item interactions. While recent methods exploit large language models to encode modalities into discrete semantic IDs for autoregressive prediction, we identify two critical limitations: (1) Existing approaches adopt fragmented quantization, where modalities are independently mapped to semantic spaces misaligned with behavioral objectives, and (2) Over-reliance on semantic IDs disrupts inter-modal semantic coherence, thereby weakening the expressive power of multi-modal representations for modeling diverse user preferences. To address these challenges, we propose a Behavior-Bind multi-modal Quantization for Sequential Recommendation (BBQRec for short) featuring dual-aligned quantization and semantics-aware sequence modeling. First, our behavior-semantic alignment module disentangles modality-agnostic behavioral patterns from noisy modality-specific features through contrastive codebook learning, ensuring semantic IDs are inherently tied to recommendation tasks. Second, we design a discretized similarity reweighting mechanism that dynamically adjusts self-attention scores using quantized semantic relationships, preserving multi-modal synergies while avoiding invasive modifications to the sequence modeling architecture. Extensive evaluations across four real-world benchmarks demonstrate BBQRec's superiority over the state-of-the-art baselines.
Related papers
- Teaching Metric Distance to Autoregressive Multimodal Foundational Models [21.894600900013316]
We introduce DIST2Loss, a distance-aware framework designed to train autoregressive discrete models.<n>DIST2Loss transforms exponential family distributions derived from inherent distance metrics into discrete, categorical optimization targets.<n> Empirical evaluations show consistent performance gains in diverse multimodal applications.
arXiv Detail & Related papers (2025-03-04T08:14:51Z) - Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
Multimodal variational autoencoders (VAEs) aim to capture shared latent representations by integrating information from different data modalities.
A significant challenge is accurately inferring representations from any subset of modalities without training an impractical number of inference networks for all possible modality combinations.
We introduce multimodal iterative amortized inference, an iterative refinement mechanism within the multimodal VAE framework.
arXiv Detail & Related papers (2024-10-15T08:49:38Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - Disentangling ID and Modality Effects for Session-based Recommendation [46.09367252640389]
We propose a novel framework DIMO to disentangle the effects of ID and modality in the task.
DIMO provides recommendations via causal inference and further creates two templates for generating explanations.
arXiv Detail & Related papers (2024-04-19T15:54:46Z) - Minimally-Supervised Speech Synthesis with Conditional Diffusion Model
and Language Model: A Comparative Study of Semantic Coding [57.42429912884543]
We propose Diff-LM-Speech, Tetra-Diff-Speech and Tri-Diff-Speech to solve high dimensionality and waveform distortion problems.
We also introduce a prompt encoder structure based on a variational autoencoder and a prosody bottleneck to improve prompt representation ability.
Experimental results show that our proposed methods outperform baseline methods.
arXiv Detail & Related papers (2023-07-28T11:20:23Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Denoising-Contrastive Alignment for Continuous Sign Language Recognition [22.800767994061175]
Continuous sign language recognition aims to recognize signs in untrimmed sign language videos to textual glosses.<n>Current cross-modality alignment paradigms often neglect the role of textual grammar to guide the video representation.<n>We propose a Denoising-Contrastive Alignment paradigm to enhance video representations.
arXiv Detail & Related papers (2023-05-05T15:20:27Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.