論文の概要: Flow-based Detection of Botnets through Bio-inspired Optimisation of Machine Learning
- arxiv url: http://arxiv.org/abs/2412.05688v2
- Date: Thu, 12 Dec 2024 14:49:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:58.900589
- Title: Flow-based Detection of Botnets through Bio-inspired Optimisation of Machine Learning
- Title(参考訳): バイオインスパイアされた機械学習の最適化によるフローベースボットネットの検出
- Authors: Biju Issac, Kyle Fryer, Seibu Mary Jacob,
- Abstract要約: ボットネットは、ボットネット内の他のメンバーと自律的に感染し、伝播し、通信し、調整することができる。
従来の検出手法は、様々なネットワークベースの検出回避手法に不適合になってきている。
本研究では,ボットネットワーク活動のバイナリ分類を容易にするために,ネットワークフローに基づく行動モデルの適用について検討する。
- 参考スコア(独自算出の注目度): 0.5735035463793009
- License:
- Abstract: Botnets could autonomously infect, propagate, communicate and coordinate with other members in the botnet, enabling cybercriminals to exploit the cumulative computing and bandwidth of its bots to facilitate cybercrime. Traditional detection methods are becoming increasingly unsuitable against various network-based detection evasion methods. These techniques ultimately render signature-based fingerprinting detection infeasible and thus this research explores the application of network flow-based behavioural modelling to facilitate the binary classification of bot network activity, whereby the detection is independent of underlying communications architectures, ports, protocols and payload-based detection evasion mechanisms. A comparative evaluation of various machine learning classification methods is conducted, to precisely determine the average accuracy of each classifier on bot datasets like CTU-13, ISOT 2010 and ISCX 2014. Additionally, hyperparameter tuning using Genetic Algorithm (GA), aiming to efficiently converge to the fittest hyperparameter set for each dataset was done. The bioinspired optimisation of Random Forest (RF) with GA achieved an average accuracy of 99.85% when it was tested against the three datasets. The model was then developed into a software product. The YouTube link of the project and demo of the software developed: https://youtu.be/gNQjC91VtOI
- Abstract(参考訳): ボットネットは、ボットネット内の他のメンバーと自律的に感染し、伝播し、通信し、調整し、サイバー犯罪者がボットの累積計算と帯域を利用してサイバー犯罪を促進することができる。
従来の検出手法は、様々なネットワークベースの検出回避手法に不適合になってきている。
これらの技術は最終的に署名に基づく指紋検出を不可能なものとし、本研究では、ボットネットワーク活動のバイナリ分類を容易にするために、ネットワークフローに基づく行動モデルの適用について検討し、その検出は基盤となる通信アーキテクチャ、ポート、プロトコル、ペイロードベースの検出回避機構とは独立している。
CTU-13, ISOT 2010, ISCX 2014などのボットデータセット上で, 各分類器の平均精度を正確に判定するために, 各種機械学習分類手法の比較評価を行った。
さらに, 遺伝的アルゴリズム (GA) を用いたハイパーパラメータチューニングを行い, 各データセットの適合度の高いハイパーパラメータに効率よく収束することを目的とした。
バイオインスパイアされたランダムフォレスト(RF)のGAによる最適化は、3つのデータセットに対して平均99.85%の精度を達成した。
モデルはその後、ソフトウェア製品へと発展していった。
プロジェクトのYouTubeリンクとソフトウェア開発のデモ:https://youtu.be/gNQjC91VtOI
関連論文リスト
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
本稿では,機械学習とディープラーニングを組み合わせたハイブリッドモデルを提案する。
提案手法は,KDDCUP'99とCIC-MalMem-2022の2つのデータセットでテストした場合,優れた結果が得られる。
論文 参考訳(メタデータ) (2022-12-08T20:19:27Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
本研究では,キーストローク生体データ合成のためのデータ駆動学習モデルを提案する。
提案手法は,ユニバーサルモデルとユーザ依存モデルに基づく2つの統計的手法と比較する。
実験フレームワークでは16万件の被験者から1億3600万件のキーストロークイベントのデータセットについて検討している。
論文 参考訳(メタデータ) (2022-07-27T09:26:15Z) - Improving Botnet Detection with Recurrent Neural Network and Transfer
Learning [5.602292536933117]
ボットネット検出は、ボットネットの拡散を防ぎ、悪意のある活動を防ぐための重要なステップである。
機械学習(ML)を用いた最近のアプローチでは、以前のアプローチよりもパフォーマンスが向上した。
Recurrent Variational Autoencoder (RVAE) を用いた新しいボットネット検出法を提案する。
論文 参考訳(メタデータ) (2021-04-26T14:05:01Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Botnet Detection Using Recurrent Variational Autoencoder [4.486436314247216]
ボットネットは悪質なアクターによってますます利用され、多くのインターネットユーザーに脅威を与えている。
本稿では,ボットネット検出のための新しい機械学習手法であるRecurrent Variational Autoencoder (RVAE)を提案する。
RVAEは文献で発表された最もよく知られた結果と同じ精度でボットネットを検出できることを示した。
論文 参考訳(メタデータ) (2020-04-01T05:03:34Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。