論文の概要: PromptRefine: Enhancing Few-Shot Performance on Low-Resource Indic Languages with Example Selection from Related Example Banks
- arxiv url: http://arxiv.org/abs/2412.05710v1
- Date: Sat, 07 Dec 2024 17:51:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:39.833743
- Title: PromptRefine: Enhancing Few-Shot Performance on Low-Resource Indic Languages with Example Selection from Related Example Banks
- Title(参考訳): PromptRefine: 低リソースのインデックス言語上でのFew-Shotのパフォーマンス向上
- Authors: Soumya Suvra Ghosal, Soumyabrata Pal, Koyel Mukherjee, Dinesh Manocha,
- Abstract要約: 大規模言語モデル(LLM)は、近ごろ、コンテキスト内学習(ICL)を通じて、印象的な数ショットの学習能力を実証した。
ICLのパフォーマンスは、数発のデモの選択に大きく依存しており、最も最適な例の選択は永続的な研究課題である。
本稿では,低リソースのIndic言語におけるICLの性能向上を目的とした,新しい代替最小化手法であるPromptRefineを提案する。
- 参考スコア(独自算出の注目度): 57.86928556668849
- License:
- Abstract: Large Language Models (LLMs) have recently demonstrated impressive few-shot learning capabilities through in-context learning (ICL). However, ICL performance is highly dependent on the choice of few-shot demonstrations, making the selection of the most optimal examples a persistent research challenge. This issue is further amplified in low-resource Indic languages, where the scarcity of ground-truth data complicates the selection process. In this work, we propose PromptRefine, a novel Alternating Minimization approach for example selection that improves ICL performance on low-resource Indic languages. PromptRefine leverages auxiliary example banks from related high-resource Indic languages and employs multi-task learning techniques to align language-specific retrievers, enabling effective cross-language retrieval. Additionally, we incorporate diversity in the selected examples to enhance generalization and reduce bias. Through comprehensive evaluations on four text generation tasks -- Cross-Lingual Question Answering, Multilingual Question Answering, Machine Translation, and Cross-Lingual Summarization using state-of-the-art LLMs such as LLAMA-3.1-8B, LLAMA-2-7B, Qwen-2-7B, and Qwen-2.5-7B, we demonstrate that PromptRefine significantly outperforms existing frameworks for retrieving examples.
- Abstract(参考訳): 大規模言語モデル(LLM)は、最近、コンテキスト内学習(ICL)を通じて、印象的な数ショットの学習機能を実証した。
しかし、ICLのパフォーマンスは数発のデモの選択に大きく依存しており、最も最適な例の選択は永続的な研究課題である。
この問題は低リソースのIndic言語でさらに増幅されている。
本稿では,低リソースのIndic言語におけるICLの性能向上を目的とした,新しい代替最小化手法であるPromptRefineを提案する。
PromptRefineは、関連する高リソースのIndic言語からの補助的なサンプルバンクを活用し、多タスク学習技術を用いて言語固有のレトリバーを調整し、効果的なクロス言語検索を可能にする。
さらに,選択した例に多様性を取り入れ,一般化とバイアスの低減を図る。
LLAMA-3.1-8B, LLAMA-2-7B, Qwen-2-7B, Qwen-2.5-7B の4つのテキスト生成タスクの総合的な評価を通じて, PromptRefine が既存のフレームワークをはるかに上回ってサンプルを検索できることを示した。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation [20.704153242284114]
機械翻訳(MT)は、テキスト内翻訳の例から恩恵を受けることが示されているタスクである。
サンプルの選択方法に関する体系的な研究は発表されておらず、類似性に基づく選択の有用性について混合の結果が報告されている。
文の埋め込み類似性は,特に低リソース言語方向においてMTを改善することができる。
論文 参考訳(メタデータ) (2024-08-01T09:07:32Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTrieverは、隠れた状態の重み付けを学習する新しいデモ検索フレームワークである。
提案手法は1ショットNL2タスクにおける最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-06-12T06:33:54Z) - From Classification to Generation: Insights into Crosslingual Retrieval
Augmented ICL [8.065775937617417]
クロスランガル検索強化インコンテキスト学習(CREA-ICL)を利用した新しい手法を提案する。
高ソース言語から意味論的に類似したプロンプトを抽出することにより、多言語事前学習言語モデル(MPLM)のゼロショット性能の向上を目指す。
我々の手法は分類タスクを着実に改善するが、生成タスクでは課題に直面している。
論文 参考訳(メタデータ) (2023-11-11T15:40:21Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Multilingual LLMs are Better Cross-lingual In-context Learners with
Alignment [24.742581572364124]
インコンテキスト学習(ICL)は、大規模言語モデルが勾配更新なしでいくつかのラベル付きサンプルに条件付きテストラベルを推測できるようになり、展開される。
言語間テキスト分類のためのICLの詳細な分析を行う。
我々は新しいプロンプト・コンストラクション・ストラテジ--クロスランガルなインコンテキスト・ソース・ターゲットアライメント(X-InSTA)を提案する。
論文 参考訳(メタデータ) (2023-05-10T07:24:36Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Prompting Large Language Model for Machine Translation: A Case Study [87.88120385000666]
我々は機械翻訳戦略の推進に関する体系的研究を行っている。
本稿では,プロンプトテンプレートと実演例選択の要因について検討する。
本稿では,モノリンガルデータの利用と,クロスリンガル,クロスドメイン,文-文書間伝達学習の実現可能性について検討する。
論文 参考訳(メタデータ) (2023-01-17T18:32:06Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
自然言語推論(NLI)は、自然言語理解において、ますます重要な課題である。
本稿では,低リソースな自然言語推論のためのマルチSCLという,マルチレベルの教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-31T05:54:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。