論文の概要: Cooperative SQL Generation for Segmented Databases By Using Multi-functional LLM Agents
- arxiv url: http://arxiv.org/abs/2412.05850v1
- Date: Sun, 08 Dec 2024 08:16:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:53.034695
- Title: Cooperative SQL Generation for Segmented Databases By Using Multi-functional LLM Agents
- Title(参考訳): 多機能LDMエージェントを用いたセグメントデータベースの協調SQL生成
- Authors: Zhiguang Wu, Fengbin Zhu, Xuequn Shang, Yupei Zhang, Pan Zhou,
- Abstract要約: 多機能エージェント(CSMA)に基づく協調sql生成フレームワークを提案する。
人間のチームワークにおけるコラボレーションに触発されて、CSMAは3つのステージから構成される。
スパイダーとバードのベックマークの実験では、CSMAは最先端技術に匹敵する高いパフォーマンスを達成している。
- 参考スコア(独自算出の注目度): 48.25853644159186
- License:
- Abstract: Text-to-SQL task aims to automatically yield SQL queries according to user text questions. To address this problem, we propose a Cooperative SQL Generation framework based on Multi-functional Agents (CSMA) through information interaction among large language model (LLM) based agents who own part of the database schema seperately. Inspired by the collaboration in human teamwork, CSMA consists of three stages: 1) Question-related schema collection, 2) Question-corresponding SQL query generation, and 3) SQL query correctness check. In the first stage, agents analyze their respective schema and communicate with each other to collect the schema information relevant to the question. In the second stage, agents try to generate the corresponding SQL query for the question using the collected information. In the third stage, agents check if the SQL query is created correctly according to their known information. This interaction-based method makes the question-relevant part of database schema from each agent to be used for SQL generation and check. Experiments on the Spider and Bird benckmark demonstrate that CSMA achieves a high performance level comparable to the state-of-the-arts, meanwhile holding the private data in these individual agents.
- Abstract(参考訳): Text-to-SQLタスクは、ユーザのテキスト質問に従ってSQLクエリを自動的に生成することを目的としている。
この問題に対処するために,大規模言語モデル (LLM) に基づくエージェント間の情報インタラクションを通じて,多機能エージェント (CSMA) に基づく協調SQL生成フレームワークを提案する。
人間のチームワークにおけるコラボレーションに触発されて、CSMAは3つのステージから構成される。
1)質問関連スキーマ収集
2)質問対応SQLクエリ生成、および
3) SQLクエリの正確性チェック。
最初の段階では、エージェントがそれぞれのスキーマを分析し、互いに通信して、質問に関連するスキーマ情報を収集します。
第2段階では、エージェントは収集された情報を使用して、質問に対応するSQLクエリを生成しようとします。
第3段階では、エージェントが既知の情報に従ってSQLクエリが正しく作成されているかどうかをチェックする。
このインタラクションベースの手法は、SQLの生成とチェックに使用する各エージェントからデータベーススキーマの質問関連部分を作成します。
スパイダーとバードのベックマークの実験では、CSMAは個々のエージェントにプライベートデータを保持しながら、最先端技術に匹敵する高いパフォーマンスを達成している。
関連論文リスト
- PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
最近のText-to-Yourselfメソッドは通常、"巨大な"データベース上での大幅なパフォーマンス劣化に悩まされる。
我々は,新しいテキスト・ツー・ユー・セルフ LLM ベースのマルチエージェント協調フレームワーク MAC を紹介する。
我々のフレームワークでは、GPT-4を全てのエージェントタスクの強力なバックボーンとして利用し、フレームワークの上限を決定する。
次に、Code 7Bを活用することで、オープンソースの命令フォローモデルであるsql-Llamaを微調整し、GPT-4のように全てのタスクを達成します。
論文 参考訳(メタデータ) (2023-12-18T14:40:20Z) - Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
サンプルと動的リビジョンチェーンを含むテキスト・ツー・アウェア・プロンプト・フレームワークを提案する。
提案手法は,質問項目のサンプルと詳細な情報を含む。
人間の介入なしに実行可能で正確なスクルを生成するために、我々は、きめ細かいフィードバックを反復的に適応する動的リビジョンチェーンを設計する。
論文 参考訳(メタデータ) (2023-07-11T07:16:22Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to-は、自然言語の質問を構造化されたクエリ言語()に変換し、データベースから情報を取得するタスクである。
本稿では,テキスト・トゥ・テキストのための LLM ベースのフレームワークを提案する。
我々は,疑問骨格を抽出する非意味化機構を設計し,その構造的類似性に基づいて類似した例を検索する。
論文 参考訳(メタデータ) (2023-04-26T06:02:01Z) - Augmenting Multi-Turn Text-to-SQL Datasets with Self-Play [46.07002748587857]
我々は、コンテキスト情報を活用して新しいインタラクションを合成するセルフプレイによるトレーニングデータセットの強化について検討する。
本研究では,SParCとCoという2つの広く使われているテキスト・ドメイン・データセットの強いベースラインの精度を向上させることを発見した。
論文 参考訳(メタデータ) (2022-10-21T16:40:07Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - CQR-SQL: Conversational Question Reformulation Enhanced
Context-Dependent Text-to-SQL Parsers [35.36754559708944]
コンテキスト依存型テキスト参照は、マルチターン質問をデータベース関連のクエリに変換するタスクである。
本稿では,CQR-Coupleを提案する。このCQR-Coupleは,CQR学習を用いて,文脈依存のforsql解析を明示的に活用し,分離する。
執筆時点で、我々のCQRカップリングは2つの文脈依存ベンチマークSParCとCoに対して、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-05-16T13:52:42Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
世界の知識は構造化データベースに保存されている。
クエリ言語は、複雑な推論を必要とする質問に答えるだけでなく、完全な説明可能性を提供することができる。
論文 参考訳(メタデータ) (2021-08-05T22:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。