Evolving Algebraic Multigrid Methods Using Grammar-Guided Genetic Programming
- URL: http://arxiv.org/abs/2412.05852v1
- Date: Sun, 08 Dec 2024 08:21:35 GMT
- Title: Evolving Algebraic Multigrid Methods Using Grammar-Guided Genetic Programming
- Authors: Dinesh Parthasarathy, Wayne Bradford Mitchell, Harald Köstler,
- Abstract summary: We use grammar rules to generate arbitrary-shaped cycles, where smoothers and relaxation weights are chosen independently.
These flexible cycles are used in Algebraic Multigrid (AMG) methods with the help of grammar rules and optimized using genetic programming.
We observe that the optimized flexible cycles provide higher efficiency and better performance than the standard cycle types.
- Score: 0.0
- License:
- Abstract: Multigrid methods despite being known to be asymptotically optimal algorithms, depend on the careful selection of their individual components for efficiency. Also, they are mostly restricted to standard cycle types like V-, F-, and W-cycles. We use grammar rules to generate arbitrary-shaped cycles, wherein the smoothers and their relaxation weights are chosen independently at each step within the cycle. We call this a flexible multigrid cycle. These flexible cycles are used in Algebraic Multigrid (AMG) methods with the help of grammar rules and optimized using genetic programming. The flexible AMG methods are implemented in the software library of hypre, and the programs are optimized separately for two cases: a standalone AMG solver for a 3D anisotropic problem and an AMG preconditioner with conjugate gradient for a multiphysics code. We observe that the optimized flexible cycles provide higher efficiency and better performance than the standard cycle types.
Related papers
- Towards Automated Algebraic Multigrid Preconditioner Design Using Genetic Programming for Large-Scale Laser Beam Welding Simulations [0.0]
We employ evolutionary algorithms to construct efficient multigrid cycles from available individual components.
This technology is applied to finite element simulations of the laser beam welding process.
arXiv Detail & Related papers (2024-12-11T08:24:38Z) - Automating the Design of Multigrid Methods with Evolutionary Program
Synthesis [0.0]
In many cases, the design of an efficient or at least working multigrid solver is an open problem.
This thesis demonstrates that grammar-guided genetic programming can discover multigrid methods of unprecedented structure.
We present our implementation in the form of the Python framework EvoStencils, which is freely available as open-source software.
arXiv Detail & Related papers (2023-12-22T17:55:48Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
This work proposes a new ensemble method for managing multilabel classification.
The core of the proposed approach combines a set of gated recurrent units and temporal convolutional neural networks trained with variants of the Adam gradients optimization approach.
arXiv Detail & Related papers (2021-10-09T00:00:16Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - A Reinforcement Learning Environment for Polyhedral Optimizations [68.8204255655161]
We propose a shape-agnostic formulation for the space of legal transformations in the polyhedral model as a Markov Decision Process (MDP)
Instead of using transformations, the formulation is based on an abstract space of possible schedules.
Our generic MDP formulation enables using reinforcement learning to learn optimization policies over a wide range of loops.
arXiv Detail & Related papers (2021-04-28T12:41:52Z) - Learning optimal multigrid smoothers via neural networks [1.9336815376402723]
We propose an efficient framework for learning optimized smoothers from operator stencils in the form of convolutional neural networks (CNNs)
CNNs are trained on small-scale problems from a given type of PDEs based on a supervised loss function derived from multigrid convergence theories.
Numerical results on anisotropic rotated Laplacian problems demonstrate improved convergence rates and solution time compared with classical hand-crafted relaxation methods.
arXiv Detail & Related papers (2021-02-24T05:02:54Z) - Combination of digital signal processing and assembled predictive models
facilitates the rational design of proteins [0.0]
Predicting the effect of mutations in proteins is one of the most critical challenges in protein engineering.
We use clustering, embedding, and dimensionality reduction techniques to select combinations of physicochemical properties for the encoding stage.
We then select the best performing predictive models in each set of properties and create an assembled model.
arXiv Detail & Related papers (2020-10-07T16:35:02Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.