論文の概要: Depression detection from Social Media Bangla Text Using Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2412.05861v1
- Date: Sun, 08 Dec 2024 08:53:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:42.928154
- Title: Depression detection from Social Media Bangla Text Using Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークを用いたソーシャルメディアバングラテキストの圧縮検出
- Authors: Sultan Ahmed, Salman Rakin, Mohammad Washeef Ibn Waliur, Nuzhat Binte Islam, Billal Hossain, Md. Mostofa Akbar,
- Abstract要約: ソーシャルメディア投稿の感情を分析し、社会に対する肯定的、否定的、感情的な行動を検出することができる。
感情分析における重要な課題の1つは、精神疾患の根本原因であるソーシャルメディアのテキストから落ち込んだテキストを特定することである。
本稿では,抑うつに着目した感情分析を行うために,Facebookのテキストに自然言語処理手法を適用した。
- 参考スコア(独自算出の注目度): 1.1874952582465599
- License:
- Abstract: Emotion artificial intelligence is a field of study that focuses on figuring out how to recognize emotions, especially in the area of text mining. Today is the age of social media which has opened a door for us to share our individual expressions, emotions, and perspectives on any event. We can analyze sentiment on social media posts to detect positive, negative, or emotional behavior toward society. One of the key challenges in sentiment analysis is to identify depressed text from social media text that is a root cause of mental ill-health. Furthermore, depression leads to severe impairment in day-to-day living and is a major source of suicide incidents. In this paper, we apply natural language processing techniques on Facebook texts for conducting emotion analysis focusing on depression using multiple machine learning algorithms. Preprocessing steps like stemming, stop word removal, etc. are used to clean the collected data, and feature extraction techniques like stylometric feature, TF-IDF, word embedding, etc. are applied to the collected dataset which consists of 983 texts collected from social media posts. In the process of class prediction, LSTM, GRU, support vector machine, and Naive-Bayes classifiers have been used. We have presented the results using the primary classification metrics including F1-score, and accuracy. This work focuses on depression detection from social media posts to help psychologists to analyze sentiment from shared posts which may reduce the undesirable behaviors of depressed individuals through diagnosis and treatment.
- Abstract(参考訳): 感情人工知能(Emotion AI)は、特にテキストマイニングの分野において、感情の認識方法を理解することに焦点を当てた研究分野である。
今日のソーシャルメディアの時代は、あらゆる出来事に対する個人の表現、感情、視点を共有するための扉を開いた。
ソーシャルメディア投稿の感情を分析し、社会に対する肯定的、否定的、感情的な行動を検出することができる。
感情分析における重要な課題の1つは、精神疾患の根本原因であるソーシャルメディアのテキストから落ち込んだテキストを特定することである。
さらに、うつ病は日々の生活に深刻な障害をもたらし、自殺事件の主な原因となっている。
本論文では,複数の機械学習アルゴリズムを用いた抑うつに着目した感情分析を行うために,Facebookのテキストに自然言語処理手法を適用した。
ストーミング、停止語除去などの前処理ステップを用いて収集したデータを浄化し、ソーシャルメディア投稿から収集された973テキストからなる収集データセットに、スタイル的特徴、TF-IDF、単語埋め込みなどの特徴抽出技術を適用する。
クラス予測の過程では、LSTM、GRU、サポートベクターマシン、ネイブベイズ分類器が使用されている。
F1スコアと精度を含む主要な分類指標を用いて,その評価結果を提示した。
この研究は、ソーシャルメディア投稿からのうつ病の検出に焦点を当て、心理学者が共有投稿から感情を分析するのを助ける。
関連論文リスト
- Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
ストレスと抑うつは日々のタスクにおけるエンゲージメントに影響を与え、彼らの相互作用を理解する必要性を強調します。
この調査は、ストレス、抑うつ、エンゲージメントを分析する計算手法を同時に探求した最初のものである。
論文 参考訳(メタデータ) (2024-03-09T11:16:09Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Machine Learning Algorithms for Depression Detection and Their
Comparison [0.0]
我々は、ソーシャルメディア利用者の行動を分析して、オンラインソーシャルメディア利用者の自動抑うつ検知を設計した。
その根底にある分類器は、感情的人工知能の最先端技術を使って作られている。
論文 参考訳(メタデータ) (2023-01-09T09:34:38Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
新型コロナウイルスのパンデミックは、ソーシャルメディアプラットフォーム上で議論されている出来事の1つだ。
パンデミックの状況では、ソーシャルメディアのテキストを分析して感情的傾向を明らかにすることが非常に有用である。
我々は、最先端のBERTモデルとDeep CNNモデルを用いて、ソーシャルメディアを通じて、新型コロナウイルスのパンデミックに対する社会の認識を研究する。
論文 参考訳(メタデータ) (2022-11-04T14:35:56Z) - Why Do You Feel This Way? Summarizing Triggers of Emotions in Social
Media Posts [61.723046082145416]
CovidET (Emotions and their Triggers during Covid-19)は、COVID-19に関連する英国のReddit投稿1,900件のデータセットである。
我々は、感情を共同で検出し、感情のトリガーを要約する強力なベースラインを開発する。
分析の結果,コビデットは感情特異的要約における新たな課題と,長文のソーシャルメディア投稿におけるマルチ感情検出の課題が示唆された。
論文 参考訳(メタデータ) (2022-10-22T19:10:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
私たちは、Early Risk Prediction on the Internet Workshop (eRisk) 2018のうつ病データセットを使用します。
その結果, うつ病者と非うつ病者の間に統計的に有意な差が認められた。
我々の研究は、抑うつした個人がソーシャルメディアプラットフォーム上で自己表現している方法に関する洞察を提供する。
論文 参考訳(メタデータ) (2021-07-31T16:23:22Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。